Representative Metals, Metalloids, and Nonmetals
Shaun Williams, PhD
Which should be the larger atom, Na or Cl? Why?
Na
Which should be the larger atom, Li or Cs? Why?
Cs
Element | Mass Percent | Element | Mass Percent |
---|---|---|---|
Oxygen | 49.2 | Chlorine | 0.19 |
Silicon | 25.7 | Phosphorous | 0.11 |
Aluminum | 7.50 | Manganese | 0.09 |
Iron | 4.71 | Carbon | 0.08 |
Calcium | 3.39 | Sulfur | 0.06 |
Sodium | 2.63 | Barium | 0.04 |
Potassium | 2.40 | Nitrogen | 0.03 |
Magnesium | 1.93 | Fluorine | 0.03 |
Hydrogen | 0.87 | All others | 0.49 |
Titanium | 0.58 |
Major Element | Mass Percent | Trace Elements (in alphabetical order) |
---|---|---|
Oxygen | 65.0 | Arsenic |
Carbon | 18.0 | Chromium |
Hydrogen | 10.0 | Cobalt |
Nitrogen | 3.0 | Copper |
Calcium | 1.4 | Fluorine |
Phosphorus | 1.0 | Iodine |
Magnesium | 0.50 | Manganese |
Potassium | 0.34 | Molybdenum |
Sulfur | 0.26 | Nickel |
Sodium | 0.14 | Selenium |
Chlorine | 0.14 | Silicon |
Iron | 0.004 | Vanadium |
Zinc | 0.003 |
Element | Source | Method of Preparation |
---|---|---|
Lithium | Silicate minerals such as spodumene, LiAl(Si2O6) | Electrolysis of molten LiCl |
Sodium | NaCl | Electrolysis of molten NaCl |
Potassium | KCl | Electrolysis of molten KCl |
Rubidium | Impurity in lepidolite, Li2(F,OH)2Al2(SiO3)3 | Reduction of RbOH with Mg and H2 |
Cesium | Pollucite(Cs4Al4Si9O26⋅H2O) and an impurity if lepidolite | Reduction of CsOH with Mg and H2 |
Reaction | Comment |
---|---|
2M+X2→2MX | X2 is any halogen molecule |
4Li+O2→2Li2O | Excess oxygen |
2Na+O2→Na2O2 | |
M+O2→MO2 | M is K, Rb, or Cs |
2M+S→M2S | |
6Li+N2→2Li3N | Li only |
12M+P4→4M3P | |
2M+H2→2MH | |
2M+2H2O→2MOH+H2 | |
2M+2H+→2M++H2 | Violent reaction! |
Predict the products formed by the following reactants: Na2O2(s)+H2O(l)
Na2O2(s)+H2O(l)→NaOH(aq)+H2O2(aq)
Predict the products formed by the following reactants: LiH(s)+H2O(l)
LiH(s)+H2O(l)→H2(g)+LiOH(aq)
Reaction | Comment |
---|---|
M+X2→MX2 | X2 is any halogen molecule |
2M+O2→2MO | Ba gives BaO2 as well |
M+S→MS | |
3M+N2→M3N2 | High temperatures |
6M+P4→2M3P2 | High temperatures |
M+H2→MH2 | M is Ca, Sr, or Ba; high temperatures; Mg at high pressure |
M+2H2O→M(OH)2+H2 | M is Ca, Sr, or Ba |
M+2H+→M2++H2 | |
Be+2OH−+2H2O→Be(OH)2−2+H2 |
Element | Radius of M3+ (pm) |
Ionization Energy (kJ/mol) |
E∘(V) M3++3e−→M |
Source | Method of Preparation |
---|---|---|---|---|---|
Boron | 20 | 798 | - | Kernite, a form of borax (Na2B4O7⋅4H2O) | Reduction by Mg or H2 |
Aluminum | 50 | 581 | -1.66 | Bauxite (Al2O3) | Electrolysis of Al2O3 in molten Na3AlF6 |
Gallium | 62 | 577 | -0.53 | Traces in various minerals | Reduction with H2 or electrolysis |
Indium | 81 | 556 | -0.34 | Traces in various minerals | Reduction with H2 or electrolysis |
Thallium | 95 | 589 | 0.72 | Traces in various minerals | Electrolysis |
Reaction | Comment |
---|---|
2M+3X2→2MX3 | X2 is any halogen molecule; Tl gives TlX as well, but no TlI3 |
4M+3O2→2M2O3 | High temperatures; Tl gives Tl2O as well |
2M+3S→M2S3 | High temperatures; Tl gives Tl2S as well |
2M+N2→2MN | M is Al only |
2M+6H+→2M3++3H2 | M is Al, Ga, or In; Tl gives Tl+ |
2M+2OH−+6H2O→2M(OH)−4+3H2 | M is Al or Ga |
Element | Electronegativity | Melting Point (∘C) | Boiling Point (∘C) | Source | Method of Preparation |
---|---|---|---|---|---|
Carbon | 2.6 | 3727 (sublimes) | - | Graphite, diamond, petroleum, coal | - |
Silicon | 1.9 | 1410 | 2355 | Silicate minerals, silica | Reduction of K2SiF6 with Al, or reduction of SiO2 with Mg |
Germanium | 2.0 | 937 | 2830 | Germinate (mixture of copper, iron, and germanium sulfides) | Reduction of GeO2 with H2 or C |
Tin | 2.0 | 327 | 2270 | Cassiterite (SnO2) | Reduction of SnO2 with C |
Lead | 2.3 | 327 | 1740 | Galena (PbS) | Reduction of PbS with O2 to form PbO2 and then reduction with C |
Reaction | Comment |
---|---|
M+2X2→MX4 | X2 is any halogen molecule; M is Ge or Sn; Pb gives PbX2 |
M+O2→MO2 | M is Ge or Sn; high temperatures; Pb gives PbO or Pb3O4 |
M+2H+→M2++H2 | M is Sn or Pb |
Element | Electronegativity | Source | Method of Preparation |
---|---|---|---|
Nitrogen | 3.0 | Air | Liquifaction of Air |
Phosphorus | 2.2 | Phosphate rock (Ca3(PO4)2), fluorapatite (Ca5(PO4)3F) | 2Ca3(PO4)2+6SiO2→6CaSiO3+P4O10 P4O10+10C→4P+10CO |
Arsenic | 2.2 | Arsenopyrite (Fe3As2, FeS) | Heating arsenopyrite in the absence of air |
Antimony | 2.1 | Stibnite (Sb2S3) | Roasting Sb2S3 in air to form Sb2O3 and then reduction with carbon |
Bismuth | 2.0 | Bismite (Bi2O3), bismuth glance (Bi2S3) | Roasting Bi2S3 in air to form Bi2O3 and then reduction with carbon |
Compound | Oxidation State of N |
---|---|
N2O | +1 |
NO | +2 |
N2O3 | +3 |
NO2 | +4 |
HNO3 | +5 |
Element | Electronegativity | Radius of X2− (pm) | Source | Method of Preparation |
---|---|---|---|---|
Oxygen | 3.4 | 140 | Air | Distillaton from liquid air |
Sulfur | 2.6 | 184 | Sulfur deposits | Melted with hot water and pumped to the surface |
Selenium | 2.6 | 198 | Impurity in sulfide ores | Reduction of H2SeO4 with SO2 |
Tellurium | 2.1 | 221 | Nagyagite (mixed sulfide and telluride) | Reduction of ore with SO3 |
Polonium | 2.0 | 230 | Pitchblende |
3O2(g)⇌2O3(g)K≈10−56O3hν→O2+O
2SO2(g)+O2(g)→2SO3(g)SO2(g)+H2O(l)→H2SO3(aq)SO3(g)+H2O(l)→H2SO4(aq)
Element | Electronegativity | Radius of X− (pm) | E∘ (V) for X2+2e−→2X− | Bond Energy of X2 (kJ/mol) |
---|---|---|---|---|
Fluorine | 4.0 | 136 | 2.87 | 154 |
Chlorine | 3.2 | 181 | 1.36 | 239 |
Bromine | 3.0 | 195 | 1.09 | 193 |
Iodine | 2.7 | 216 | 0.54 | 149 |
Astatine | 2.2 | - | - | - |
Element | Color and State | Percentage of Earth's Crust | Metling Point (∘C) | Boiling Point (∘C) | Source | Method of Preparation |
---|---|---|---|---|---|---|
Fluorine | Pale yellow gas | 0.07 | -220 | -188 | Fluorospar (CaF2), cryolite (Na3AlF6), fluorapatite (Ca5(PO4)3F) | Electrolysis of molten KHF2 |
Chlorine | Yellow-green gas | 0.14 | -101 | -34 | Rock salt (NaCl), halite (NaCl), sylvite (KCl) | Electrolysis of aqueous NaCl |
Bromine | Red-brown liquid | 2.5×10−4 | -7.3 | 59 | Seawater, brine wells | Oxidation of Br− by Cl2 |
Iodine | Violet-black solid | 3×10−5 | 113 | 184 | Seaweed, brine wells | Oxidation of I− by electrolysis or MnO2 |
H2(g)+X2(g)→2HX(g)
Oxidation State of Halogen | Fluorine | Chlorine | Bromine | Iodine* | General Name of Acids | General Name of Salts |
---|---|---|---|---|---|---|
+1 | HOF† | HOCl | HOBr | HOI | Hypohalous acid | Hypohalites, MOX |
+3 | ‡ | HOClO | ‡ | ‡ | Halous acid | Halites, MXO2 |
+5 | ‡ | HOClO2 | HOBrO2 | HOIO2 | Halic acid | Halates, MXO3 |
+7 | ‡ | HOClO3 | HOBrO3 | HOIO4 | Perhalic acid | Perhalates, MXO4 |
* Iodine also forms H4I2O9 (mesodiperiodic acid) and H5IO6 (paraperiodic acid).
† HOF oxidation state is best represented as -1.
‡ Compound is unknown.
Element | Melting Point (∘C) | Boiling Point (∘C) | Atmoshperic Abundance (% by volume) | Example of Compounds |
---|---|---|---|---|
Helium | -270 | -269 | 5×10−4 | None |
Neon | -249 | -246 | 1×10−3 | None |
Argon | -189 | -186 | 9×10−1 | HArF |
Krypton | -157 | -153 | 1×10−4 | KrF2 |
Xenon | -112 | -107 | 9×10−6 | XeF4, XeO3, XeF6 |
Which of the following groups is the most reactive? Group 1A, Group 5A, Group 6A, or Group 8A?
Group 1A Elements
White of the following groups does not contain at least one element that forms compounds with oxygen? Group 4A, Group 5A, Group 6A, Group 7A?
All of these groups contain at least one element that forms compounds with oxygen.
1 / 58