\( \newcommand{\xrightleftharpoons}[2]{\overset{#1}{\underset{#2}{\rightleftharpoons}}} \) \( \newcommand{\conc}[1]{\left[\mathrm{#1}\right]} \) \( \newcommand{\chem}[1]{\mathrm{#1}} \)
Representative Metals, Metalloids, and Nonmetals
Shaun Williams, PhD
Which should be the larger atom, Na or Cl? Why?
Na
Which should be the larger atom, Li or Cs? Why?
Cs
Element | Mass Percent | Element | Mass Percent |
---|---|---|---|
Oxygen | 49.2 | Chlorine | 0.19 |
Silicon | 25.7 | Phosphorous | 0.11 |
Aluminum | 7.50 | Manganese | 0.09 |
Iron | 4.71 | Carbon | 0.08 |
Calcium | 3.39 | Sulfur | 0.06 |
Sodium | 2.63 | Barium | 0.04 |
Potassium | 2.40 | Nitrogen | 0.03 |
Magnesium | 1.93 | Fluorine | 0.03 |
Hydrogen | 0.87 | All others | 0.49 |
Titanium | 0.58 |
Major Element | Mass Percent | Trace Elements (in alphabetical order) |
---|---|---|
Oxygen | 65.0 | Arsenic |
Carbon | 18.0 | Chromium |
Hydrogen | 10.0 | Cobalt |
Nitrogen | 3.0 | Copper |
Calcium | 1.4 | Fluorine |
Phosphorus | 1.0 | Iodine |
Magnesium | 0.50 | Manganese |
Potassium | 0.34 | Molybdenum |
Sulfur | 0.26 | Nickel |
Sodium | 0.14 | Selenium |
Chlorine | 0.14 | Silicon |
Iron | 0.004 | Vanadium |
Zinc | 0.003 |
Element | Source | Method of Preparation |
---|---|---|
Lithium | Silicate minerals such as spodumene, \( \chem{LiAl(Si_2O_6)} \) | Electrolysis of molten \( \chem{LiCl} \) |
Sodium | \( \chem{NaCl} \) | Electrolysis of molten \( \chem{NaCl} \) |
Potassium | \( \chem{KCl} \) | Electrolysis of molten \( \chem{KCl} \) |
Rubidium | Impurity in lepidolite, \( \chem{Li_2(F, OH)_2Al_2(SiO_3)_3} \) | Reduction of \(\chem{RbOH}\) with \(\chem{Mg}\) and \(\chem{H_2}\) |
Cesium | Pollucite(\( \chem{Cs_4Al_4Si_9O_26\cdot H_2O} \)) and an impurity if lepidolite | Reduction of \(\chem{CsOH}\) with \(\chem{Mg}\) and \(\chem{H_2}\) |
Reaction | Comment |
---|---|
\(\chem{2M+X_2 \rightarrow 2MX}\) | \(\chem{X_2}\) is any halogen molecule |
\(\chem{4Li+O_2 \rightarrow 2Li_2O}\) | Excess oxygen |
\(\chem{2Na+O_2 \rightarrow Na_2O_2}\) | |
\(\chem{M+O_2 \rightarrow MO_2}\) | \(\chem{M}\) is \(\chem{K}\), \(\chem{Rb}\), or \(\chem{Cs}\) |
\(\chem{2M+S \rightarrow M_2S}\) | |
\(\chem{6Li+N_2 \rightarrow 2Li_3N}\) | \(\chem{Li}\) only |
\(\chem{12M+P_4 \rightarrow 4M_3P}\) | |
\(\chem{2M+H_2 \rightarrow 2MH}\) | |
\(\chem{2M+2H_2O \rightarrow 2MOH+H_2}\) | |
\(\chem{2M+2H^+ \rightarrow 2M^++H_2}\) | Violent reaction! |
Predict the products formed by the following reactants: \(\chem{Na_2O_2(s)+H_2O(l)}\)
\(\chem{Na_2O_2(s)+H_2O(l)\rightarrow NaOH(aq)+H_2O_2(aq)}\)
Predict the products formed by the following reactants: \(\chem{LiH(s)+H_2O(l)}\)
\(\chem{LiH(s)+H_2O(l)\rightarrow H_2(g)+LiOH(aq)}\)
Reaction | Comment |
---|---|
\(\chem{M+X_2 \rightarrow MX_2}\) | \(\chem{X_2}\) is any halogen molecule |
\(\chem{2M+O_2 \rightarrow 2MO}\) | \(\chem{Ba}\) gives \(\chem{BaO_2}\) as well |
\(\chem{M+S \rightarrow MS}\) | |
\(\chem{3M+N_2 \rightarrow M_3N_2}\) | High temperatures |
\(\chem{6M+P_4 \rightarrow 2M_3P_2}\) | High temperatures |
\(\chem{M+H_2 \rightarrow MH_2}\) | \(\chem{M}\) is \(\chem{Ca}\), \(\chem{Sr}\), or \(\chem{Ba}\); high temperatures; \(\chem{Mg}\) at high pressure |
\(\chem{M+2H_2O \rightarrow M(OH)_2+H_2}\) | \(\chem{M}\) is \(\chem{Ca}\), \(\chem{Sr}\), or \(\chem{Ba}\) |
\(\chem{M+2H^+ \rightarrow M^{2+}+H_2}\) | |
\(\chem{Be+2OH^-+2H_2O \rightarrow Be(OH)_2^{2-}+H_2}\) |
Element | Radius of \(\chem{M^{3+}}\) (pm) |
Ionization Energy (kJ/mol) |
\(\mathcal{E}^\circ\,(\mathrm{V})\) \(\chem{M^{3+}+3e^-\rightarrow M}\) |
Source | Method of Preparation |
---|---|---|---|---|---|
Boron | 20 | 798 | - | Kernite, a form of borax (\(\chem{Na_2B_4O_7\cdot 4H_2O}\)) | Reduction by \(\chem{Mg}\) or \(\chem{H_2}\) |
Aluminum | 50 | 581 | -1.66 | Bauxite (\(\chem{Al_2O_3}\)) | Electrolysis of \(\chem{Al_2O_3}\) in molten \(\chem{Na_3AlF_6}\) |
Gallium | 62 | 577 | -0.53 | Traces in various minerals | Reduction with \(\chem{H_2}\) or electrolysis |
Indium | 81 | 556 | -0.34 | Traces in various minerals | Reduction with \(\chem{H_2}\) or electrolysis |
Thallium | 95 | 589 | 0.72 | Traces in various minerals | Electrolysis |
Reaction | Comment |
---|---|
\(\chem{2M+3X_2 \rightarrow 2MX_3}\) | \(\chem{X_2}\) is any halogen molecule; \(\chem{Tl}\) gives \(\chem{TlX}\) as well, but no \(\chem{TlI_3}\) |
\(\chem{4M+3O_2 \rightarrow 2M_2O_3}\) | High temperatures; \(\chem{Tl}\) gives \(\chem{Tl_2O}\) as well |
\(\chem{2M+3S \rightarrow M_2S_3}\) | High temperatures; \(\chem{Tl}\) gives \(\chem{Tl_2S}\) as well |
\(\chem{2M+N_2 \rightarrow 2MN}\) | \(\chem{M}\) is \(\chem{Al}\) only |
\(\chem{2M+6H^+ \rightarrow 2M^{3+}+3H_2}\) | \(\chem{M}\) is \(\chem{Al}\), \(\chem{Ga}\), or \(\chem{In}\); \(\chem{Tl}\) gives \(\chem{Tl^+}\) |
\(\chem{2M+2OH^-+6H_2O \rightarrow 2M(OH)_4^-+3H_2}\) | \(\chem{M}\) is \(\chem{Al}\) or \(\chem{Ga}\) |
Element | Electronegativity | Melting Point (\({}^\circ \mathrm{C}\)) | Boiling Point (\({}^\circ \mathrm{C}\)) | Source | Method of Preparation |
---|---|---|---|---|---|
Carbon | 2.6 | 3727 (sublimes) | - | Graphite, diamond, petroleum, coal | - |
Silicon | 1.9 | 1410 | 2355 | Silicate minerals, silica | Reduction of \(\chem{K_2SiF_6}\) with \(\chem{Al}\), or reduction of \(\chem{SiO_2}\) with \(\chem{Mg}\) |
Germanium | 2.0 | 937 | 2830 | Germinate (mixture of copper, iron, and germanium sulfides) | Reduction of \(\chem{GeO_2}\) with \(\chem{H_2}\) or \(\chem{C}\) |
Tin | 2.0 | 327 | 2270 | Cassiterite (\(\chem{SnO_2}\)) | Reduction of \(\chem{SnO_2}\) with \(\chem{C}\) |
Lead | 2.3 | 327 | 1740 | Galena (\(\chem{PbS}\)) | Reduction of \(\chem{PbS}\) with \(\chem{O_2}\) to form \(\chem{PbO_2}\) and then reduction with \(\chem{C}\) |
Reaction | Comment |
---|---|
\(\chem{M+2X_2 \rightarrow MX_4}\) | \(\chem{X_2}\) is any halogen molecule; \(\chem{M}\) is \(\chem{Ge}\) or \(\chem{Sn}\); \(\chem{Pb}\) gives \(\chem{PbX_2}\) |
\(\chem{M+O_2 \rightarrow MO_2}\) | \(\chem{M}\) is \(\chem{Ge}\) or \(\chem{Sn}\); high temperatures; \(\chem{Pb}\) gives \(\chem{PbO}\) or \(\chem{Pb_3O_4}\) |
\(\chem{M+2H^+ \rightarrow M^{2+}+H_2}\) | \(\chem{M}\) is \(\chem{Sn}\) or \(\chem{Pb}\) |
Element | Electronegativity | Source | Method of Preparation |
---|---|---|---|
Nitrogen | 3.0 | Air | Liquifaction of Air |
Phosphorus | 2.2 | Phosphate rock (\(\chem{Ca_3(PO_4)_2}\)), fluorapatite (\(\chem{Ca_5(PO_4)_3F}\)) | \(\chem{2Ca_3(PO_4)_2+6SiO_2 \rightarrow 6CaSiO_3+P_4O_{10}}\) \(\chem{P_4O_{10}+10C\rightarrow 4P+10CO}\) |
Arsenic | 2.2 | Arsenopyrite (\(\chem{Fe_3As_2}\), \(\chem{FeS}\)) | Heating arsenopyrite in the absence of air |
Antimony | 2.1 | Stibnite (\(\chem{Sb_2S_3}\)) | Roasting \(\chem{Sb_2S_3}\) in air to form \(\chem{Sb_2O_3}\) and then reduction with carbon |
Bismuth | 2.0 | Bismite (\(\chem{Bi_2O_3}\)), bismuth glance (\(\chem{Bi_2S_3}\)) | Roasting \(\chem{Bi_2S_3}\) in air to form \(\chem{Bi_2O_3}\) and then reduction with carbon |
Compound | Oxidation State of \(\chem{N}\) |
---|---|
\(\chem{N_2O}\) | +1 |
\(\chem{NO}\) | +2 |
\(\chem{N_2O_3}\) | +3 |
\(\chem{NO_2}\) | +4 |
\(\chem{HNO_3}\) | +5 |
Element | Electronegativity | Radius of \(\chem{X^{2-}}\) (pm) | Source | Method of Preparation |
---|---|---|---|---|
Oxygen | 3.4 | 140 | Air | Distillaton from liquid air |
Sulfur | 2.6 | 184 | Sulfur deposits | Melted with hot water and pumped to the surface |
Selenium | 2.6 | 198 | Impurity in sulfide ores | Reduction of \(\chem{H_2SeO_4}\) with \(\chem{SO_2}\) |
Tellurium | 2.1 | 221 | Nagyagite (mixed sulfide and telluride) | Reduction of ore with \(\chem{SO_3}\) |
Polonium | 2.0 | 230 | Pitchblende |
$$ \begin{align} & \chem{3O_2(g) \rightleftharpoons 2O_3(g)\;\;\;\;K\approx 10^{-56}} \\ & \chem{O_3} \xrightarrow{h\nu} \chem{O_2+O} \end{align} $$
$$ \begin{align} \chem{2SO_2(g)+O_2(g)} & \rightarrow \chem{2SO_3(g)} \\ \chem{SO_2(g)+H_2O(l)} & \rightarrow \chem{H_2SO_3(aq)} \\ \chem{SO_3(g)+H_2O(l)} & \rightarrow \chem{H_2SO_4(aq)} \end{align} $$
Element | Electronegativity | Radius of \(\chem{X^-}\) (pm) | \(\mathcal{E}^\circ\) (V) for \(\chem{X_2+2e^- \rightarrow 2X^-}\) | Bond Energy of \(\chem{X_2}\) (kJ/mol) |
---|---|---|---|---|
Fluorine | 4.0 | 136 | 2.87 | 154 |
Chlorine | 3.2 | 181 | 1.36 | 239 |
Bromine | 3.0 | 195 | 1.09 | 193 |
Iodine | 2.7 | 216 | 0.54 | 149 |
Astatine | 2.2 | - | - | - |
Element | Color and State | Percentage of Earth's Crust | Metling Point (\({}^\circ\mathrm{C}\)) | Boiling Point (\({}^\circ\mathrm{C}\)) | Source | Method of Preparation |
---|---|---|---|---|---|---|
Fluorine | Pale yellow gas | 0.07 | -220 | -188 | Fluorospar (\(\chem{CaF_2}\)), cryolite (\(\chem{Na_3AlF_6}\)), fluorapatite (\(\chem{Ca_5(PO_4)_3F}\)) | Electrolysis of molten \(\chem{KHF_2}\) |
Chlorine | Yellow-green gas | 0.14 | -101 | -34 | Rock salt (\(\chem{NaCl}\)), halite (\(\chem{NaCl}\)), sylvite (\(\chem{KCl}\)) | Electrolysis of aqueous \(\chem{NaCl}\) |
Bromine | Red-brown liquid | \(2.5 \times 10^{-4}\) | -7.3 | 59 | Seawater, brine wells | Oxidation of \(\chem{Br^-}\) by \(\chem{Cl_2}\) |
Iodine | Violet-black solid | \(3 \times 10^{-5}\) | 113 | 184 | Seaweed, brine wells | Oxidation of \(\chem{I^-}\) by electrolysis or \(\chem{MnO_2}\) |
$$ \chem{H_2(g)+X_2(g)\rightarrow 2HX(g)} $$
Oxidation State of Halogen | Fluorine | Chlorine | Bromine | Iodine* | General Name of Acids | General Name of Salts |
---|---|---|---|---|---|---|
+1 | \(\chem{HOF}\)† | \(\chem{HOCl}\) | \(\chem{HOBr}\) | \(\chem{HOI}\) | Hypohalous acid | Hypohalites, \(\chem{MOX}\) |
+3 | ‡ | \(\chem{HOClO}\) | ‡ | ‡ | Halous acid | Halites, \(\chem{MXO_2}\) |
+5 | ‡ | \(\chem{HOClO_2}\) | \(\chem{HOBrO_2}\) | \(\chem{HOIO_2}\) | Halic acid | Halates, \(\chem{MXO_3}\) |
+7 | ‡ | \(\chem{HOClO_3}\) | \(\chem{HOBrO_3}\) | \(\chem{HOIO_4}\) | Perhalic acid | Perhalates, \(\chem{MXO_4}\) |
* Iodine also forms \(\chem{H_4I_2O_9}\) (mesodiperiodic acid) and \(\chem{H_5IO_6}\) (paraperiodic acid).
† \(\chem{HOF}\) oxidation state is best represented as -1.
‡ Compound is unknown.
Element | Melting Point (\({}^\circ\mathrm{C}\)) | Boiling Point (\({}^\circ\mathrm{C}\)) | Atmoshperic Abundance (% by volume) | Example of Compounds |
---|---|---|---|---|
Helium | -270 | -269 | \(5 \times 10^{-4}\) | None |
Neon | -249 | -246 | \(1 \times 10^{-3}\) | None |
Argon | -189 | -186 | \(9 \times 10^{-1}\) | \(\chem{HArF}\) |
Krypton | -157 | -153 | \(1 \times 10^{-4}\) | \(\chem{KrF_2}\) |
Xenon | -112 | -107 | \(9 \times 10^{-6}\) | \(\chem{XeF_4}\), \(\chem{XeO_3}\), \(\chem{XeF_6}\) |
Which of the following groups is the most reactive? Group 1A, Group 5A, Group 6A, or Group 8A?
Group 1A Elements
White of the following groups does not contain at least one element that forms compounds with oxygen? Group 4A, Group 5A, Group 6A, Group 7A?
All of these groups contain at least one element that forms compounds with oxygen.
/