\( \newcommand{\xrightleftharpoons}[2]{\overset{#1}{\underset{#2}{\rightleftharpoons}}} \) \( \newcommand{\conc}[1]{\left[\mathrm{#1}\right]} \) \( \newcommand{\chem}[1]{\mathrm{#1}} \) \( \newcommand{\expect}[1]{\left< #1 \right>} \)

Putting the Second Law to Work

Shaun Williams, PhD

Free Energy Functions

Building a More Useful Equation

Almost There!

\[ \Delta S_{sys} - \frac{\Delta H_{sys}}{T} \ge 0 \]

Gibbs Function

\[ \Delta H - T\Delta S\le 0 \]

Spontaneous Reactions

\[ \Delta G = \Delta H - T \Delta S \lt 0 \]

Consider the factors driving the following spontaneous reactions: \[ \chem{NaOH(s)\rightarrow Na^+(aq) + OH^-(aq)} \;\;\; \Delta H<0\] \[ \chem{NaHCO_3(s)\rightarrow Na^+(aq) + HCO_3^-(aq)} \;\;\; \Delta H>0 \]

Spontaneity Conditions for a Process At Constant \(T\) and \(P\)

\[ \Delta G = \Delta H - T \Delta S \lt 0 \]

\(\Delta H\)      \(\Delta S\)      Spontaneous?     
\(>0\) \(>0\) At high \(T\)
\(>0\) \(<0\) At no \(T\)
\(<0\) \(>0\) At all \(T\)
\(<0\) \(<0\) At low \(T\)

Helmholtz Function (or Helmholtz Free Energy)

\(\Delta U\)      \(\Delta S\)      Spontaneous?     
\(>0\) \(>0\) At high \(T\)
\(>0\) \(<0\) At no \(T\)
\(<0\) \(>0\) At all \(T\)
\(<0\) \(<0\) At low \(T\)

Example 6.1

Given the following data at \(298K\), calculate \(\Delta G^\circ\) at \(298K\) for the following reaction: \[ \chem{C_2H_4(g) + H_2(g) \rightarrow C_2H_6(g)} \]

Substance      \(\Delta G^\circ_f\;(\bfrac{kJ}{mol})\)
\(\chem{C_2H_4(g)}\) 68.4
\(\chem{C_2H_6(g)}\) -32.0

Combining the First and Second Laws - Maxwell's Relations

Maxwell Relations

First Maxwell Relation

Building Another Maxwell Relation

\[ H\equiv U+PV \] \[ dH=dU+PdV+VdP \] \[ dH = TdS-PdV+PdV+VdP = TdS+VdP\] \[ dH=\left(\frac{\partial H}{\partial S}\right)_PdS+\left( \frac{\partial H}{\partial P}\right)_SdV \] \[ \left(\frac{\partial H}{\partial S}\right)_P=T \text{ and } \left(\frac{\partial H}{\partial P}\right)_S=V \] Note that: \[ \left(\frac{\partial U}{\partial S}\right)_V=T=\left(\frac{\partial H}{\partial S}\right)_P \]

Our Second Maxwell Relation

\[ \left[ \frac{\partial}{\partial P}\left( \frac{\partial H}{\partial S}\right)_P\right]_S = \left[ \frac{\partial}{\partial S}\left( \frac{\partial H}{\partial P}\right)_S\right]_P \] \[ \left(\frac{\partial T}{\partial P}\right)_S = \left(\frac{\partial V}{\partial S}\right)_P \]

Four Maxwell Relations

Function      Differential      Natural Variables    Maxwell Relation
\(U\) \(dU=TdS-PdV\) \(S,\,V\) \(\left(\frac{\partial T}{\partial V}\right)_S=-\left(\frac{\partial P}{\partial S}\right)_V\)
\(H\) \(dH=TdS+VdP\) \(S,\,P\) \(\left(\frac{\partial T}{\partial P}\right)_S=\left(\frac{\partial V}{\partial S}\right)_P\)
\(A\) \(dA=-PdV-SdT\) \(V,\,T\) \(\left(\frac{\partial P}{\partial T}\right)_V=\left(\frac{\partial S}{\partial V}\right)_T\)
\(G\) \(dG=VdP-SdT\) \(P,\,T\) \(\left(\frac{\partial V}{\partial T}\right)_P=-\left(\frac{\partial S}{\partial P}\right)_T\)

Example 6.2

Show that \[ \left(\frac{\partial U}{\partial V}\right)_T=T\frac{\alpha}{\kappa_T}-P \]

\(\Delta A\), \(\Delta G\), and Maximum Work

What About \(G\)

\[ G=H-TS=U+PV-TS \] \[ dG=dU+PdV+VdP-TdS-SdT \]

Volume Dependence of Helmholtz Energy

Working on our Derivation

Completing our Derivation

Further Extension

Example 6.3

Calculate \(\Delta A\) for the isothermal expansion of 1.00 mol of an ideal gas from 10.0 L to 25.0 L at 298 K.

Pressure Dependence of Gibbs' Energy

Continuing the Derivation

Result

Example 6.4

The density of gold is \(19.32\bfrac{g}{cm^3}\). Calculate \(\Delta G\) for a 1.00 g sample of gold when the pressure on it is increased from 1.00 atm to 2.00 atm.

Temperature Dependence of \(A\) and \(G\)

Problem

New Method of Getting There

Simplification

\[ \left( \frac{\partial \left(\frac{A}{T}\right)}{\partial T}\right)_V = -\frac{U}{T^2} \;\; \text{ and } \;\; \left(\frac{\partial \left(\frac{G}{T}\right)}{\partial T}\right)_P = -\frac{H}{T^2} \]

Solving the Integral

Example 6.5

Given the following data at 298 K, calculate \(\Delta G\) at 500 K for the following reaction: \[ \chem{CH_4(g)+2O_2(g)\rightarrow CO_2(g)+H_2O(g)} \]

Compound    \(\Delta G_f^\circ (\bfrac{kJ}{mol})\)    \(\Delta H_f^\circ (\bfrac{kJ}{mol})\)
\(\chem{CH_4(g)}\) -50.5 -74.6
\(\chem{CO_2(g)}\) -394.4 -393.5
\(\chem{H_2O(g)}\) -228.6 -241.8

When Two Variables Change at Once

Example 6.6

Calculate the entropy change for 1.00 mol of a monatomic ideal gas (\(C_V=\frac{3}{2}R\)) expanding from 10.0 L at 273 K to 22.0 L at 297 K.

Deriving an Expression for a Partial Derivative (Type III)

Continuing the Derivation

More Derivation

Still More Derivation

Finishing the Derivation

The Difference Between \(C_P\) and \(C_V\)

Simplifying the Expression

Further Simplification to Our Equation

Getting Closer to Our Solution

We need to derive another partial derivative

Simplification with a Maxwell Relation

\( \left( \frac{\partial U}{\partial V} \right)_T = T \left( \frac{\partial S}{\partial V} \right)_T - P \)

Plugging stuff in now

Almost Done

\( C_P = \frac{TV\alpha^2}{\kappa_T} + C_V \)

Evaluating Our Expression for an Ideal Gas

\( C_P - C_V = \frac{TV\alpha^2}{\kappa_T} \)

/