\( \newcommand{\xrightleftharpoons}[2]{\overset{#1}{\underset{#2}{\rightleftharpoons}}} \) \( \newcommand{\conc}[1]{\left[\mathrm{#1}\right]} \) \( \newcommand{\chem}[1]{\mathrm{#1}} \) \( \newcommand{\expect}[1]{\left< #1 \right>} \)

Gases

Shaun Williams, PhD

The Empirical Gas Laws

Boyle's Law

Charles' Law

Gay-Lussac's Law

Combined Gas Law

Avogadro's Law

The Ideal Gas Law

Value Unit       Value Unit
8.3144598 \( \frac{J}{mol\, K} \) 1.9872036 \( \frac{cal}{mol\, K} \)
0.082057338 \( \frac{L\, atm}{mol\, K} \) 0.0019872036 \( \frac{kcal}{mol\, K} \)
0.083144598 \( \frac{L\, bar}{mol\, K} \)

Note: \( R=N_Ak_B \) where \( k_B = 1.38064852\times 10^{-23}\, \bfrac{J}{K} \) and \( N_A= 6.022140857\times 10^{23}\,mol^{-1} \)

The Kinetic Molecular Theory of Gases

The kinetic molecular theory of gases has 5 postulates in its modern form

  1. Gas particles obey Newton’s laws of motion and travel in straight lines unless they collide with other particles or the walls of the container.
  2. Gas particles are very small compared to the averages of the distances between them.
  3. Molecular collisions are perfectly elastic so that kinetic energy is conserved.
  4. Gas particles so not interact with other particles except through collisions. There are no attractive or repulsive forces between particles.
  5. The average kinetic energy of the particles in a sample of gas is proportional to the temperature.

Maxwell Distribution of Speeds

Calculating the Average Speed of a Gas

We can calculate the average molecular speed of a gas

\[ \begin{eqnarray} \left< v \right> &=& \int_{-\infty}^{\infty} v\,f(v)\,dv \\ &=& \int_{-\infty}^{\infty} v\, 4\pi \sqrt{\left( \frac{m}{2\pi k_BT} \right)^3} v^2 \exp \left( -\frac{mv^2}{2k_BT} \right)\,dv \\ &=& 4\pi \sqrt{\left( \frac{m}{2\pi k_BT} \right)^3} \int_{-\infty}^{\infty} v^3 \exp \left( -\frac{mv^2}{2k_BT} \right)\, dv \end{eqnarray} \]

Solving the Integral

\[ \left< v \right> = 4\pi \sqrt{\left( \frac{m}{2\pi k_BT} \right)^3} \int_{-\infty}^{\infty} v^3 \exp \left( -\frac{mv^2}{2k_BT} \right)\, dv \]

We can find how to solve this integral in a table of integrals: \[ \int_0^\infty x^{2n+1} e^{-ax^2} \, dx = \frac{n!}{2a^{n+1}} \]

So \[ \begin{eqnarray} \left< v \right> &=& 4\pi \sqrt{\left( \frac{m}{2\pi k_BT} \right)^3} \left[ \frac{1}{2\left( \frac{m}{2k_BT} \right)^2} \right] \\ &=& \left(\frac{8k_BT}{\pi m}\right)^\bfrac{1}{2} \end{eqnarray} \]

Example 2.1

What is the average value of the squared speed according to the Maxwell distribution law?

Note: \( \int_0^\infty x^{2n}e^{-ax^2}\,dx=\frac{1\cdot 3\cdot 5\cdots (2n-1)}{2^{n+1}a^n}\sqrt{\frac{\pi}{a}} \)

Note 2: The root-mean-squared (RMS) speed of gas particle is the squareroot of the average value of \(v^2\) \[ v_{rms}=\sqrt{\left< v^2 \right>} \]

Kinetic Energy

Using expresson for \(v_{mp}\), \(v_{avg}\), and \(v_{rms}\) we can develop expression for the kinetic energy using \[ E_k=\frac{1}{2}mv^2 \]

Property Speed Kinetic Energy
Most probable \(\sqrt{\frac{2k_BT}{m}}\) \(k_BT\)
Average \(\sqrt{\frac{8k_BT}{\pi m}}\) \(\frac{4k_BT}{\pi}\)
Root-mean-squared \(\sqrt{\frac{3k_BT}{m}}\) \(\frac{3}{2}k_BT\)

Real Gases

The van der Waals Equation

Gas      a (atm L2 mol-2)      b (L mol-1)
He 0.0341 0.0238
N2 1.352 0.0387
CO2 3.610 0.0429
C2H4 4.552 0.0305

Other Real Gas Laws

Model      Equation of State
Ideal \( P=\frac{RT}{V_m} \)
van der Waals \( P=\frac{RT}{V_m-b}-\frac{a}{V_m^2} \)
Redlich-Kwong \( P=\frac{RT}{V_m-b} - \frac{a}{\sqrt{T}V_m\left(V_m+b\right)} \)
Dieterici \( P=\frac{RT}{V_m-b}\exp \left( \frac{-a}{V_mRT} \right) \)
Clausius \( P=\frac{RT}{V_m-b}-\frac{a}{T\left(V_m+c\right)^2} \)
Virial Expansion \( P=\frac{RT}{V_m}\left( 1+\frac{B(T)}{V_m}+\frac{C(T)}{V_m^2}\cdots \right) \)

/