\( \newcommand{\xrightleftharpoons}[2]{\overset{#1}{\underset{#2}{\rightleftharpoons}}} \) \( \newcommand{\conc}[1]{\left[\mathrm{#1}\right]} \) \( \newcommand{\chem}[1]{\mathrm{#1}} \) \( \newcommand{\expect}[1]{\left< #1 \right>} \)
Gases
Shaun Williams, PhD
Value | Unit | Value | Unit | |
---|---|---|---|---|
8.3144598 | \( \frac{J}{mol\, K} \) | 1.9872036 | \( \frac{cal}{mol\, K} \) | |
0.082057338 | \( \frac{L\, atm}{mol\, K} \) | 0.0019872036 | \( \frac{kcal}{mol\, K} \) | |
0.083144598 | \( \frac{L\, bar}{mol\, K} \) |
Note: \( R=N_Ak_B \) where \( k_B = 1.38064852\times 10^{-23}\, \bfrac{J}{K} \) and \( N_A= 6.022140857\times 10^{23}\,mol^{-1} \)
The kinetic molecular theory of gases has 5 postulates in its modern form
We can calculate the average molecular speed of a gas
\[ \begin{eqnarray} \left< v \right> &=& \int_{-\infty}^{\infty} v\,f(v)\,dv \\ &=& \int_{-\infty}^{\infty} v\, 4\pi \sqrt{\left( \frac{m}{2\pi k_BT} \right)^3} v^2 \exp \left( -\frac{mv^2}{2k_BT} \right)\,dv \\ &=& 4\pi \sqrt{\left( \frac{m}{2\pi k_BT} \right)^3} \int_{-\infty}^{\infty} v^3 \exp \left( -\frac{mv^2}{2k_BT} \right)\, dv \end{eqnarray} \]\[ \left< v \right> = 4\pi \sqrt{\left( \frac{m}{2\pi k_BT} \right)^3} \int_{-\infty}^{\infty} v^3 \exp \left( -\frac{mv^2}{2k_BT} \right)\, dv \]
We can find how to solve this integral in a table of integrals: \[ \int_0^\infty x^{2n+1} e^{-ax^2} \, dx = \frac{n!}{2a^{n+1}} \]
So \[ \begin{eqnarray} \left< v \right> &=& 4\pi \sqrt{\left( \frac{m}{2\pi k_BT} \right)^3} \left[ \frac{1}{2\left( \frac{m}{2k_BT} \right)^2} \right] \\ &=& \left(\frac{8k_BT}{\pi m}\right)^\bfrac{1}{2} \end{eqnarray} \]
What is the average value of the squared speed according to the Maxwell distribution law?
Note: \( \int_0^\infty x^{2n}e^{-ax^2}\,dx=\frac{1\cdot 3\cdot 5\cdots (2n-1)}{2^{n+1}a^n}\sqrt{\frac{\pi}{a}} \)
Note 2: The root-mean-squared (RMS) speed of gas particle is the squareroot of the average value of \(v^2\) \[ v_{rms}=\sqrt{\left< v^2 \right>} \]
Using expresson for \(v_{mp}\), \(v_{avg}\), and \(v_{rms}\) we can develop expression for the kinetic energy using \[ E_k=\frac{1}{2}mv^2 \]
Property | Speed | Kinetic Energy |
---|---|---|
Most probable | \(\sqrt{\frac{2k_BT}{m}}\) | \(k_BT\) |
Average | \(\sqrt{\frac{8k_BT}{\pi m}}\) | \(\frac{4k_BT}{\pi}\) |
Root-mean-squared | \(\sqrt{\frac{3k_BT}{m}}\) | \(\frac{3}{2}k_BT\) |
Gas | a (atm L2 mol-2) | b (L mol-1) |
---|---|---|
He | 0.0341 | 0.0238 |
N2 | 1.352 | 0.0387 |
CO2 | 3.610 | 0.0429 |
C2H4 | 4.552 | 0.0305 |
Model | Equation of State |
---|---|
Ideal | \( P=\frac{RT}{V_m} \) |
van der Waals | \( P=\frac{RT}{V_m-b}-\frac{a}{V_m^2} \) |
Redlich-Kwong | \( P=\frac{RT}{V_m-b} - \frac{a}{\sqrt{T}V_m\left(V_m+b\right)} \) |
Dieterici | \( P=\frac{RT}{V_m-b}\exp \left( \frac{-a}{V_mRT} \right) \) |
Clausius | \( P=\frac{RT}{V_m-b}-\frac{a}{T\left(V_m+c\right)^2} \) |
Virial Expansion | \( P=\frac{RT}{V_m}\left( 1+\frac{B(T)}{V_m}+\frac{C(T)}{V_m^2}\cdots \right) \) |
/