\( \newcommand{\xrightleftharpoons}[2]{\overset{#1}{\underset{#2}{\rightleftharpoons}}} \) \( \newcommand{\conc}[1]{\left[\mathrm{#1}\right]} \) \( \newcommand{\chem}[1]{\mathrm{#1}} \)

Chemical Kinetics: Multi-Step Reactions

Shaun Williams, PhD

Elements of Multi-Step Reactions

Elements of Multi-Step Reactions

Reversible Steps

Reversible Unimolecular Elementary Reaction

$$ \mathrm{A} \xrightleftharpoons{k_1}{k_{-1}} \mathrm{B} $$

Developing the Integrated Rate Law

$$ \begin{align} v & = \frac{d\conc{B}}{dt} = -\frac{d\conc{A}}{dt} = \frac{dx}{dt} \\ & = k_1 \conc{A} - k_{-1}\conc{B} = k_1 \left( \conc{A}_0 - x \right) - k_{-1}\left( \conc{B}_0 + x \right) = \frac{dx}{dt} \\ dt & = \frac{dx}{k_1 \left( \conc{A}_0 - x \right) - k_{-1}\left( \conc{B}_0 + x \right)} \\ & = \frac{dx}{k_1 \conc{A}_0 -k_1 x - k_{-1}\conc{B}_0 - k_{-1}x} \\ & = \frac{dx}{k_1 \conc{A}_0 - k_{-1}\conc{B}_0 - \left( k_1 + k_{-1} \right) x} \end{align} $$

Continuing

$$ dt = \frac{dx}{k_1 \conc{A}_0 - k_{-1}\conc{B}_0 - \left( k_1 + k_{-1} \right) x} $$

$$ \begin{align} dt & = \frac{dx}{\left( k_1 + k_{-1} \right) \left( \frac{k_1}{k_1 + k_{-1}} \conc{A}_0 - \frac{k_{-1}}{k_1 + k_{-1}}\conc{B}_0 - x \right)} \\ -\left( k_1 + k_{-1} \right)\, dt & = \frac{dx}{\frac{k_{-1}}{k_1 + k_{-1}}\conc{B}_0 - \frac{k_1}{k_1 + k_{-1}} \conc{A}_0 + x} \\ -\left( k_1 + k_{-1} \right)\, dt & = \frac{dx}{\left(\frac{1}{k_1 + k_{-1}}\right)\left( k_{-1}\conc{B}_0 - k_1\conc{A}_0\right) + x } \\ \end{align} $$

Almost there...

$$ -\left( k_1 + k_{-1} \right)\, dt = \frac{dx}{\left(\frac{1}{k_1 + k_{-1}}\right)\left( k_{-1}\conc{B}_0 - k_1\conc{A}_0\right) + x } $$

$$ \begin{align} \int_0^t -\left( k_1 + k_{-1} \right)\, dt & = \int_0^x \frac{dx'}{\left(\frac{1}{k_1 + k_{-1}}\right)\left( k_{-1}\conc{B}_0 - k_1\conc{A}_0\right) + x' } \\ -\left( k_1 + k_{-1} \right) t & = \ln \left[ \frac{\left(\frac{1}{k_1 + k_{-1}}\right)\left( k_{-1}\conc{B}_0 - k_1\conc{A}_0\right) + x}{\left(\frac{1}{k_1 + k_{-1}}\right)\left( k_{-1}\conc{B}_0 - k_1\conc{A}_0\right)} \right] \\ x & = \left( \frac{k_1\conc{A}_0 - k_{-1}\conc{B}_0}{k_1 + k_{-1}} \right) \left( 1 - e^{-\left( k_1 + k_{-1} \right)t} \right) \end{align} $$

Finally, the Integrated Rate Law

$$ x = \left( \frac{k_1\conc{A}_0 - k_{-1}\conc{B}_0}{k_1 + k_{-1}} \right) \left( 1 - e^{-\left( k_1 + k_{-1} \right)t} \right) $$

$$ \begin{align} \conc{A} & = \conc{A}_0 - x = \conc{A}_0 - \left( \frac{k_1\conc{A}_0 - k_{-1}\conc{B}_0}{k_1 + k_{-1}} \right) \left( 1 - e^{-\left( k_1 + k_{-1} \right)t} \right) \\ \conc{B} & = \conc{B}_0 + x = \conc{B}_0 + \left( \frac{k_1\conc{A}_0 - k_{-1}\conc{B}_0}{k_1 + k_{-1}} \right) \left( 1 - e^{-\left( k_1 + k_{-1} \right)t} \right) \end{align} $$ Note that $$ \begin{align} \lim_{k_{-1}\rightarrow 0} \conc{A} & = \conc{A}_0 - \left( \frac{k_1\conc{A}_0}{k_1} \right) \left( 1 - e^{-k_1 t} \right) \\ \lim_{k_{-1}\rightarrow 0} \conc{A} & = \conc{A}_0 - \left( \conc{A}_0 - \conc{A}_0 e^{-k_1 t} \right) = \conc{A}_0e^{-k_1 t} \end{align} $$

Equilibrium

Parallel Reactions

The Products in Parallel Reactions

$$ \conc{A}=\conc{A}_0e^{-\left( k_1 + k_2 \right)t} $$

Example 14.1

The compound \(\beta\)-pinene isomerizes at 650 K to either 4-isopropenyl-1-methylcyclohexene (call it IMC), with a rate constant of \( k_1 = 0.22\,\mathrm{s}^{-1} \), or to myrcene, with a rate constant of \( k_2 = 0.13\,\mathrm{s}^{-1} \). If the reaction is carried out under kinetic control, what is the ratio of IMC to myrcene, and what is the half-life of the \(\beta\)-pinene?

Sequential Reactions

Finding B

$$ \begin{align} \frac{d\conc{B}}{dt} & = k_1 \conc{A} - k_2 \conc{B} \\ & = k_1 \conc{A}_0 e^{-k_1 t} - k_2 \conc{B} \end{align} $$

Finding C

$$ \begin{align} \conc{A} & =\conc{A}_0 e^{-k_1 t} \\ \conc{B} & = \frac{\conc{A}_0k_1}{k_2-k_1}\left( e^{-k_1t}-e^{-k_2t} \right) \end{align} $$

Approximations in Kinetics

Approximations in Kinetics

The Steady-State Approximation

Using the Steady-State Approximation

$$ \chem{A+B} \xrightleftharpoons{k_1}{k_{-1}} \chem{C} \xrightarrow{k_2} \chem{D} $$

The Steady-State Approximation Effect on other Species

Continuing the Analysis of \(\chem{A}\)

$$ \begin{align} -\frac{d\conc{A}'}{dt} & = \left( 1-\frac{k_{-1}}{k_{-1}+k_2} \right) k_1 \conc{A}'\conc{B}' \\ \conc{B}_0-\conc{B}' & =\conc{A}_0-\conc{A}' \end{align} $$

Finishing the Analysis of \(\chem{A}\)

$$ -\frac{d\conc{A}'}{\conc{A}'\left( \conc{B}_0 - \conc{A}_0 + \conc{A}' \right)} = \left( 1 - \frac{k_{-1}}{k_{-1}+k_2} \right) k_1\,dt $$

Example 14.2

Show that the last equation correctly predicts the rate law of an irreversible bimolecular reaction \( \chem{A+B} \xrightarrow{k_1} \chem{D} \) in the limit that \( k_{-1} \ll k_1 \)

The Fast-Equilibrium Approximation

$$ \chem{A+B} \xrightleftharpoons{k_1}{k_{-1}} \chem{C} \xrightarrow{k_2} \chem{D} $$

The Initial Rate Approximation

Experiment

To find the initial rate, we run three experiments

  1. The initial concentrations are each \( 1.0\,\mathrm{mol}\,\mathrm{L}^{-1} \). The concentration of A drops to \( 0.90\,\mathrm{mol}\,\mathrm{L}^{-1} \) at 22.4 seconds after starting the reaction.
  2. We double the initial concentration of B to \( 2.0\,\mathrm{mol}\,\mathrm{L}^{-1} \) and now find that A reaches \( 0.90\,\mathrm{mol}\,\mathrm{L}^{-1} \) at 11.1 seconds.
  3. We double the initial concentration of A to \( 2.0\,\mathrm{mol}\,\mathrm{L}^{-1} \), (with B back at \( 1.0\,\mathrm{mol}\,\mathrm{L}^{-1} \)) and find that A reaches \( 1.90\,\mathrm{mol}\,\mathrm{L}^{-1} \) at 5.3 seconds.

We are going to replace \( d\conc{A} \) in the rate law by the in concentration of A.

Solving the Experiment

$$ \begin{align} -\frac{d\conc{A}}{dt} = & k\conc{A}^n\conc{B}^m \\ -\frac{\Delta \conc{A}}{\Delta t} \approx & k\conc{A}_0^n\conc{B}_0^m \\ \frac{0.10}{22.4} \approx & k\left( 1.0 \right)^n \left( 1.0 \right)^m \\ \frac{0.10}{11.1} \approx & k\left( 1.0 \right)^n \left( 2.0 \right)^m \\ \frac{0.10}{5.3} \approx & k\left( 2.0 \right)^n \left( 1.0 \right)^m \\ \end{align} $$ Dividing the first equation into the second and third we find that $$ 2\approx \left(2.0\right)^m \;\;\; 4 \approx \left(2.0\right)^n $$ Thus \(m=1\) and \(n=2\).

Solving the Experiment Continued

The Pseudo-Lower Order Approximation

$$ \chem{A+B} \xrightleftharpoons{k_1}{k_{-1}} \chem{C} \xrightarrow{k_2} \chem{D} $$

Chain Reactions

Chain Reactions

$$ \begin{align} \mathrm{initiation:} & \chem{H_2\rightarrow 2H} \\ & \chem{O_2 \rightarrow 2O} \\ \mathrm{branching:} & \chem{H + O_2 \rightarrow OH + O} \\ & \chem{O+H_2\rightarrow OH+H} \\ \mathrm{propagation:} & \chem{OH+H_2\rightarrow H_2O +H} \\ \mathrm{termination:} & \chem{2H+M\rightarrow H_2+M} \\ & \chem{H+O_2+M\rightarrow HO_2+M} \\ & \chem{HO_2 + OH \rightarrow H_2O + O_2} \\ & \chem{HO_2+H\rightarrow H_2+O_2} \end{align} $$

Reaction Networks

The Atmosphere

Different gas densities and distances from the earth's surface favor different heating and cooling mechanisms

  1. Troposhere (0 to ~18 km above the earth's surface)
    • \(T\) decreases with altitude.
    • The atmosphere is largely transparent to the visible and infrared
    • This level of the atmosphere is heated partly by convention and partly by infrared radiation
    • Molecules that absorb the infrared are most abundant in this region of the atmosphere

The Atmosphere Continued

  1. Stratosphere (~18 to ~50 km)
    • \(T\) increases with altitude
    • This layer is heated by chemical reactions
    • The formation and destruction of \(\chem{O_3}\) contributes to the heating of this region
    • These reactions are initiated by the sun's ultraviolet radiation
    • Because of the need for solar radiation, this mechanism increases as altitude increases

More About The Atmosphere

  1. Mesosphere (~50 to ~90 km)
    • \(T\) decreases with altitude
    • Gas densities have dropped so reactions slow down
    • Additional cooling by infrared radiation of thermally excited \(\chem{CO_2}\) into the infrared transparent upper atmosphere
    • In this region, the atmosphere reaches its coldest temperatures, as low as 100 K under extreme conditions.

Top of the Atmosphere

  1. Thermosphere (~90 to ~500-1000 km)
    • \(T\) increases with altitude
    • This region is heated by the direct photodissociation and photoionization of \(\chem{O_2}\) and \(\chem{N_2}\)
    • These endothermic processes convert high-frequency ultraviolet light into kinetic energy of separated atoms and atomic ions
    • This results is temperatures on the order of 1000 K.
    • The ions in the lower sections interact most strongly with ground-based radio transmissions so it is also known as the ionosphere

The Chapman Mechanism

First Analysis

First Analysis Continued

First Analysis Concluded

The \(\chem{HO_x}\) Cycle

The \(\chem{HO_x}\) cycle is dominated by two systems

  1. Below an altitude of 30 km $$ \begin{align} \chem{OH+O_3} &\rightarrow \chem{HO_2+O_2} \\ \chem{HO_2+O_3} &\rightarrow \chem{OH+O_2+O_2} \end{align} $$ $$\mathrm{Net:}\;\chem{2O_3\rightarrow 3O_2} $$
  2. Above an altitude of 40 km $$ \begin{align} \chem{OH+O} &\rightarrow \chem{H+O_1} \\ \chem{H+O_2+M} &\rightarrow \chem{HO_2+M} \\ \chem{HO_2+O} &\rightarrow \chem{OH+O_2} \end{align} $$ $$\mathrm{Net:}\;\chem{2O\rightarrow O_2} $$

The \(\chem{NO_x}\) Cycle

$$ \begin{align} \chem{NO+O_3} &\rightarrow \chem{NO_2+O_2} \\ \chem{NO_2+O} &\rightarrow \chem{NO+O_2} \\ \chem{NO_2+OH+M} &\rightarrow \chem{HNO_3+M} \end{align} $$ $$ \mathrm{Net:}\;\chem{O_3+O+NO_2+OH\rightarrow 2O_2+HNO_3} $$

The \(\chem{ClO_x}\) Cycle

$$ \begin{align} \chem{CCl_2F_2}+h\nu &\rightarrow \chem{CF_2Cl+Cl} \\ \chem{Cl+O_3} &\rightarrow \chem{ClO+O_2} \\ \chem{ClO+O} &\rightarrow \chem{Cl+O_2} \\ \chem{Cl+CH_4} &\rightarrow \chem{HCl+CH_3} \end{align} $$ $$ \mathrm{Net}\;\chem{CCl_2F_2+O_3+O+CH_4}+h\nu \rightarrow \chem{2O_2+CF_2Cl+HCl+CH_3} $$

Example 14.3

Use the concentration of atomic oxygen and ozone as determined by the Chapman mechanism to find an expression for the steady-state concentration of \(\chem{NO}\), which appears as an intermediate in the \(\chem{NO_x}\) cycle, in terms of \(\conc{NO_2}\), \(\conc{O_2}\), \(\conc{O_3}\), and relevant rate constants. Assume for simplicity that no other reactions contribute significantly to the \(\chem{NO}\) concentrations.

Enzyme Catalysis

Central Questions of Enzyme-Substrate Systems

Biomolecular Structure

Electronic Spectroscopy of Biomolecules

Spectroscopy of Protein Sample

Spectroscopy sample with one detector set in the beam to measure absorption and another detector at a right angle to the beam to measure fluorescence.

Enzyme Kinetics: The Michaelis-Menton Equation

$$ \chem{E+S} \xrightleftharpoons{k_1}{k_{-1}} \chem{ES} \xrightleftharpoons{k_2}{k_{-2}} \chem{EP} \xrightleftharpoons{k_3}{k_{-3}} \chem{E+P} $$

Starting Work on the Rate Law

$$ \chem{E+S} \xrightleftharpoons{k_1}{k_{-1}} \chem{ES} \xrightarrow{k_2} \chem{E+P} $$ $$ \begin{align} \frac{d\conc{P}}{dt} &= k_2\conc{ES} \\ \frac{d\conc{ES}}{dt} &= k_1\conc{E}\conc{S}-k_{-1}\conc{ES}-k_2\conc{ES} \\ &= k_1\conc{E}\conc{S}-k_{-1}\conc{ES}_{ss}-k_2\conc{ES}_{ss}\overset{ss}{=}0 \\ \conc{ES}_{ss} &= \frac{k_1\conc{E}\conc{S}}{k_{-1}+k_2} = \frac{k_1}{k_{-1}+k_2}\conc{E}\conc{S} \end{align} $$ We can simplify this equation by defining the Michaelis-Menton constant, \( K_M\equiv \frac{k_{-1}+k_2}{k_1} \), therefore \( \conc{ES}_{ss} = \frac{\conc{E}\conc{S}}{K_M} \)

More Work on the Rate Law

$$ \chem{E+S} \xrightleftharpoons{k_1}{k_{-1}} \chem{ES} \xrightarrow{k_2} \chem{E+P} $$ $$ \begin{align} \conc{ES}_{ss} &= \frac{\conc{E}\conc{S}}{K_M} \\ \conc{E}_0 &= \conc{E}+\conc{ES} \\ \conc{ES}_{ss} &= \frac{\left( \conc{E}_0-\conc{ES}_{ss} \right)\conc{S}}{K_M} \\ &= \frac{\conc{E}_0\conc{S}}{K_M}-\frac{\conc{ES}_{ss}\conc{S}}{K_M} \\ \conc{ES}_{ss}\left( 1+\frac{\conc{S}}{K_M} \right) &= \frac{\conc{E}_0\conc{S}}{K_M} \\ \conc{ES}_{ss} &= \frac{\bfrac{\conc{E}_0\conc{S}}{K_M}}{\bfrac{1+\conc{S}}{K_M}} = \frac{\conc{E}_0\conc{S}}{K_M+\conc{S}} \end{align} $$

Continuing Work on the Rate Law

$$ \chem{E+S} \xrightleftharpoons{k_1}{k_{-1}} \chem{ES} \xrightarrow{k_2} \chem{E+P} $$ $$ \frac{d\conc{P}}{dt} = k_2\conc{ES} $$ $$ \conc{ES}_{ss} = \frac{\conc{E}_0\conc{S}}{K_M+\conc{S}} $$ Combining the last two equatons we find that $$ \frac{d\conc{P}}{dt} = k_2\conc{ES}_{ss} = k_2 \frac{\conc{E}_0\conc{S}}{K_M+\conc{S}} $$ This is one form of the Michaelis-Menton equation. All the values on the right-hand side (RHS) are constant except for \(\conc{S}\).

Analysis of the Michaelis-Menton Equation

$$ \frac{d\conc{P}}{dt} = k_2 \frac{\conc{E}_0\conc{S}}{K_M+\conc{S}} $$

Modification of the Michaelis-Menton Equation

The Michaelis-Menton Reaction Velocity

The predicted reaction velocity d[P]/dt for early times in an enzyme-catalyzed reaction is graphed as a function of substrate concentration [S]. The plot show the rise toward the v-max limit.

Uses of Michaelis-Menton Equation

Complication

Applying the Complication

The Inhibited Michaelis-Menton Equation

More Enzyme Information

Combustion Chemistry

Laminar Flow

Important Reactions in the Combusion of \(\chem{CH_4}\) in \(\chem{O_2}\)

These reaction rates are determined at 2000 K in units of \(\left( \chem{cm^{3}\,mol^{-1}} \right)^{n-1}\,\chem{s}^{-1}\), when \(n\) is the molecularity of the reaction. When \(k_r\) is not given, the reverse reaction is negligible.

reaction \(k_f\) \(k_r\)
1. \( \chem{H+O_2 \rightleftharpoons OH+O} \) \( 2.92 \times 10^{11} \) \( 1.15 \times 10^{13} \)
2. \( \chem{H+O_2+M \rightleftharpoons HO_2+M} \) \( 5.26 \times 10^{15} \) \( 2.17 \times 10^{10} \)
3. \( \chem{H_2+O \rightleftharpoons H+OH} \) \( 8.97 \times 10^{12} \) \( 7.02 \times 10^{12} \)
4. \( \chem{H_2+OH \rightleftharpoons H+H_2O} \) \( 8.34 \times 10^{12} \) \( 8.36 \times 10^{11} \)
5. \( \chem{2OH \rightleftharpoons H_2O+O} \) \( 8.48 \times 10^{12} \) \( 1.20 \times 10^{12} \)
6. \( \chem{HO_2+H \rightleftharpoons 2OH} \) \( 1.17 \times 10^{14} \) \( 6.00 \times 10^{8} \)

Important Reactions in the Combusion of \(\chem{CH_4}\) in \(\chem{O_2}\) (cont.)

reaction \(k_f\) \(k_r\)
7. \( \chem{HO_2+H \rightleftharpoons H_2+O_2} \) \( 2.10 \times 10^{13} \)
8. \( \chem{HO_2+H \rightleftharpoons H_2O+O} \) \( 1.95 \times 10^{13} \)
9. \( \chem{HO_2+OH \rightleftharpoons H_2O+O_2} \) \( 1.30 \times 10^{13} \)
10. \( \chem{CO+OH \rightleftharpoons CO_2+H} \) \( 4.74 \times 10^{11} \) \( 2.01 \times 10^{11} \)
11. \( \chem{CH_4+H \rightleftharpoons H_2+CH_3} \) \( 1.95 \times 10^{13} \) \( 9.40 \times 10^{11} \)
12. \( \chem{CH_4+OH \rightleftharpoons H_2O+CH_3} \) \( 7.37 \times 10^{12} \) \( 1.05 \times 10^{11} \)
13. \( \chem{CH_3+O \rightleftharpoons CH_2O+H} \) \( 7.00 \times 10^{13} \) \( 5.30 \times 10^{7} \)
14. \( \chem{CH_3+OH \rightleftharpoons CH_2O+2H} \) \( 1.83 \times 10^{13} \)

Important Reactions in the Combusion of \(\chem{CH_4}\) in \(\chem{O_2}\) (cont. more)

reaction \(k_f\) \(k_r\)
15. \( \chem{CH_3+OH \rightleftharpoons CH_2O+H_2} \) \( 8.00 \times 10^{12} \)
16. \( \chem{CH_3+OH \rightleftharpoons CH_2+H_2O} \) \( 4.26 \times 10^{12} \)
17. \( \chem{CH_3+H \rightleftharpoons CH_2+H_2} \) \( 4.07 \times 10^{12} \)
18. \( \chem{CH_3+H+M \rightleftharpoons CH_4+M} \) \( 1.11 \times 10^{17} \) \( 4.30 \times 10^{7} \)
19. \( \chem{CH_2+H \rightleftharpoons CH+H_2} \) \( 4.00 \times 10^{13} \) \( 1.31 \times 10^{13} \)
20. \( \chem{CH_2+OH \rightleftharpoons CH_2O} \) \( 2.50 \times 10^{13} \)
21. \( \chem{CH_2+OH \rightleftharpoons CH+H_2O} \) \( 2.11 \times 10^{13} \)
22. \( \chem{CH_2+O_2 \rightleftharpoons CO_2+2H} \) \( 4.45 \times 10^{12} \)

Important Reactions in the Combusion of \(\chem{CH_4}\) in \(\chem{O_2}\) (completed)

reaction \(k_f\) \(k_r\)
23. \( \chem{CH_2+O_2 \rightleftharpoons CO+OH+H} \) \( 4.45 \times 10^{12} \)
24. \( \chem{CH+O_2 \rightleftharpoons CHO+O} \) \( 3.00 \times 10^{13} \)
25. \( \chem{CH+OH \rightleftharpoons CHO+H} \) \( 3.00 \times 10^{13} \)
26. \( \chem{CH_2O+H \rightleftharpoons CHO+H_2} \) \( 9.16 \times 10^{12} \) \( 4.20 \times 10^{9} \)
27. \( \chem{CH_2O+OH \rightleftharpoons CHO+H_2O} \) \( 2.22 \times 10^{13} \) \( 8.60 \times 10^{9} \)
28. \( \chem{CHO+H \rightleftharpoons CO+H_2} \) \( 2.00 \times 10^{14} \) \( 2.80 \times 10^{5} \)
29. \( \chem{CHO+OH \rightleftharpoons CO+H_2O} \) \( 1.00 \times 10^{14} \) \( 1.30 \times 10^{4} \)
30. \( \chem{CHO+M \rightleftharpoons CO+H+M} \) \( 1.04 \times 10^{13} \) \( 3.63 \times 10^{12} \)
31. \( \chem{CHO+O_2 \rightleftharpoons CO+HO_2} \) \( 3.00 \times 10^{12} \)

Simplifying the System

\(\chem{O_2}\) Consumption Steps

1. \( \chem{2\left( H+O_2 \rightleftharpoons OH+O \right)} \)
3. \( \chem{2\left( H_2+O \rightleftharpoons H+OH \right)} \)
4. \( \chem{4\left( H_2+OH \rightleftharpoons H+H_2O \right)} \)
net \( \chem{2\left( 3H_2+O_2 \rightleftharpoons 2H_2O+2H \right)} \)
\( \Delta_{rxn}H = -42.7\,\mathrm{kJ}\,\mathrm{mol}^{-1} \)
\( \Delta_{rxn}S = 9.9\,\mathrm{kJ}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1} \)

\(\chem{CH_4}\) Consumption Steps

11. \( \chem{CH_4+H \rightleftharpoons H_2+CH_3} \)
13. \( \chem{CH_3+O \rightleftharpoons CH_2O+H} \)
26. \( \chem{CH_2O+H \rightleftharpoons CHO+H_2} \)
30. \( \chem{CHO+M \rightleftharpoons CO+H+M} \)
3. \( \chem{H+OH \rightleftharpoons O+H_2} \)
4. \( \chem{H+H_2O \rightleftharpoons OH+H_2} \)
net \( \chem{CH_4+2H+H_2O \rightleftharpoons CO+4H_2} \)
\( \Delta_{rxn}H = -229.8\,\mathrm{kJ}\,\mathrm{mol}^{-1} \)
\( \Delta_{rxn}S = 115.9\,\mathrm{kJ}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1} \)

\(\chem{CO}\) Shift Steps

10. \( \chem{CO+OH \rightleftharpoons CO_2+H} \)
4. \( \chem{H+H_2O \rightleftharpoons H_2+OH} \)
net \( \chem{CO+H_2O \rightleftharpoons CO_2+H_2} \)
\( \Delta_{rxn}H = -41.2\,\mathrm{kJ}\,\mathrm{mol}^{-1} \)
\( \Delta_{rxn}S = -42.1\,\mathrm{kJ}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1} \)

\(\chem{H_2}\) Recombination Steps

2. \( \chem{O_2+H+M \rightleftharpoons HO_2+M} \)
9. \( \chem{OH+HO_2 \rightleftharpoons H_2O+O_2} \)
4. \( \chem{H+H_2O \rightleftharpoons OH+H_2} \)
net \( \chem{2H+M \rightleftharpoons H_2+M} \)
\( \Delta_{rxn}H = -453.9\,\mathrm{kJ}\,\mathrm{mol}^{-1} \)
\( \Delta_{rxn}S = -98.7\,\mathrm{kJ}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1} \)

Schematic of the Regions in the Methane-Air Flame

The fuel/air mixture flows into the combustion region from the left, passing through a preheat zone that warms the mixture and initiates reactions, through the fuel consumption layer in which the methane is effectively used up, and into an oxidation layer. The \(\chem{CO}\) shift reaction and oxidation of \(\chem{H_2}\) to \(\chem{H_2O}\) occur primarily in the oxidation layer. Note: It is possible to decrease the amount of \(\chem{CO}\) in the exhaust gases by increasing the initial \(\chem{O_2}\) concentration or by seeding the fuel mix with other sources of \(\chem{OH}\).

Astrophysics and Spectroscopy

Stellar Emission

The Parts of a Stellar Atmosphere

Optical Thickness of a Stellar Interior

In the denser regions of a star, matter is so compressed that photons are absorbed, scattered, and emitted many times before they work their way toward the surface, where they can travel unimpeded. The arrow in the figure represents a photon emitted near the core of the star, interacting with many atoms in the central, optically thick region of the star, and eventually finding its way to the optically thin photosphere.

Example 14.4

The sun's emission spectrum is characteristic of a blackbody at a temperature of 5800 K. find the peak emission wavelength. The blackbody radiaton spectrum is given by $$ \rho(\nu)\,d\nu = \frac{8\pi h\nu^3\,d\nu}{c^3\left( e^{\bfrac{h\nu}{k_BT}}-1 \right)} $$

Example 14.5

Heat is carried to the optically thin layer of a star primarily by convection. Radiation is just too inefficient a process in the dense core. Use Einstein's diffusion equation $$ t\approx \frac{R^2}{6D} $$ to estimate the time required for a photon generated at the sun's center to diffuse out of the sun's core, a distance of \( 1.7\times 10^8\,\mathrm{m} \). Although the actual number density on the core approaches \(10^{26}\,\mathrm{cm}^{-3}\), the photons interact weakly with the matter, and have a mean free path of about \(0.1\,\mathrm{cm}\). Use the mean free path to estimate the diffusion constant $$ D=\frac{\lambda^2\gamma}{2} $$ where \(\lambda\) is mean free path, \(\gamma\) is the collision frequency.

The Interstellar Medium

Energy Transfer in Molecular Clouds

Molecular clouds are cooler than the surrounding atomic gas, as low as 5 K, because they constantly emit radiation from rotational transitions of polar molecules into the optically thin surroundings. No significant cooling transitions are available for the atomic gas until its temperature exceeds about 100 K. Molecular clouds absorb energy from nearby stars, cosmic rays, and interstellar shock waves propgating through space.

Cosmic Abundances of the Dominant Elements, Relative to Hydrogen

element relative abundance species in molecular clouds
\(\chem{H}\) 1 \(\chem{H,\,H_2,\,H_2O,\,HCN}\)
\(\chem{He}\) \(6.3 \times 10^{-2}\) \(\chem{He}\)
\(\chem{O}\) \(6.9 \times 10^{-4}\) \(\chem{CO,\,SiO,\,H_2O,\,OH,\,HCO,\,MgO,\,CO_2,\,OCS,\,O_2}\)
\(\chem{C}\) \(4.2 \times 10^{-4}\) \(\chem{CO,\,HCN,\,CS,\,HCO,\,CO_2,\,CH_4,\,OCS}\)
\(\chem{N}\) \(8.7 \times 10^{-5}\) \(\chem{N_2,\,HCN,\,NH_3,\,NH_2}\)
\(\chem{Si}\) \(4.5 \times 10^{-5}\) \(\chem{Si,\,SiS,\,SiO,\,SiO_2}\)
\(\chem{Mg}\) \(4.0 \times 10^{-5}\) \(\chem{Mg,\,MgH,\,MgS,\,MgO}\)
\(\chem{Ne}\) \(3.7 \times 10^{-5}\) \(\chem{Ne}\)
\(\chem{Fe}\) \(3.2 \times 10^{-5}\) \(\chem{Fe}\)
\(\chem{S}\) \(1.6 \times 10^{-5}\) \(\chem{SiS,\,CS,\,S,\,HS,\,H_2S,\,MgS}\)

Interstellar Chemical Synthesis: Detected Organic Molecular

\(\chem{CH}\) \(\chem{C_2}\) \(\chem{CN}\) \(\chem{CO}\) \(\chem{CS}\)
\(\chem{CH^+}\) \(\chem{HOC^+}\) \(\chem{HCS^+}\) \(\chem{HCNH^+}\) \(\chem{HCO^+}\)
\(\chem{HCN}\) \(\chem{HNC}\) \(\chem{HNCO}\) \(\chem{HNCS}\)
\(\chem{HC_3N}\) \(\chem{HC_5N}\) \(\chem{HC_7N}\) \(\chem{HC_9N}\) \(\chem{HC_{11}N}\)
\(\chem{CH_3CN}\) \(\chem{CH_3NC}\) \(\chem{C_2H_3CN}\) \(\chem{C_3H_5CN}\)
\(\chem{CH_3CHO}\) \(\chem{HC_2CHO}\) \(\chem{HC_3HOH}\) \(\chem{CH_3CH_2OH}\) \(\chem{CH_3OH}\)
\(\chem{C_3O}\) \(\chem{HC_2O}\) \(\chem{H_2CS}\) \(\chem{HCOOH}\) \(\chem{CH_3COOH}\)
\(\chem{CH_3SH}\) \(\chem{NH_2CHO}\) \(\chem{NH_2CN}\) \(\chem{c-SiC_2}\) \(\chem{c-C_3H_2}\)
\(\chem{C_3N}\) \(\chem{CH_3C_3N}\) \(\chem{CH_3C_4H}\) \(\chem{CH_3CCH}\)
\(\chem{C_2H}\) \(\chem{C_3H}\) \(\chem{C_4H}\) \(\chem{C_5H}\)
Note: "c-" prefix indicates a cyclic molecule.

Example 14.9

Based on the parameters given in the following table, estime the rates of formation of \(\chem{HCl^+}\) and \(\chem{HCl}\) at 80 K in the Orion Molecular Cloud from the reactions given. $$ \begin{align} \chem{Cl^++H_2} &\rightarrow^{k_1} \chem{HCl^++H} \\ \chem{Cl+H_2} &\rightarrow^{k_2} \chem{HCl+H} \end{align} $$

\( \conc{Cl^+} \) \( 1 \times 10^{-12} \,\mathrm{cm}^{-3} \) \( \conc{Cl} \) \( 4 \times 10^{-3} \,\mathrm{cm}^{-3} \)
\( \conc{H_3^+} \) \( 1 \times 10^{-4} \,\mathrm{cm}^{-3} \) \( \conc{H_2} \) \( 1 \times 10^{5} \,\mathrm{cm}^{-3} \)
\( \conc{e^-} \) \( 1 \times 10^{-12} \,\mathrm{cm}^{-3} \) \( T \) \( 80\,\mathrm{K} \)
\( A_1(80\,\mathrm{K}) \) \( 1 \times 10^{-9} \,\mathrm{cm}^{-3}\,\mathrm{s}^{-1} \) \( A_2(80\,\mathrm{K}) \) \( 1 \times 10^{-10} \,\mathrm{cm}^{-3}\,\mathrm{s}^{-1} \)
\( E_{a1} \) \( 0 \,\mathrm{kJ}\,\mathrm{mol}^{-1} \) \( E_{a2} \) \( 23 \,\mathrm{kJ}\,\mathrm{mol}^{-1} \)

Example 14.10

Contraryto the apparent results of the previous example, the \(\bfrac{\conc{HCl}}{\conc{HCl^+}}\) ratio in the Orion Molecular Cloud is estimated at \( 2 \times 10^9 \). There is a more efficient way to produce the \(\chem{HCl}\) than by reaction 2 in the previous mechanism, and the \(\chem{HCl^+}\) is itself consumed in one of those reactions: $$ \begin{align} \chem{Cl+H_3^+ \xrightarrow{k_3} HCl^++H_2} &~~~~~~~~& k_3 &= 1.0 \times 10^{-9}\,\mathrm{cm}^3\,\mathrm{s}^{-1} \\ \chem{HCl^++H_2 \xrightarrow{k_4} H_2Cl^++H} &~~~~~~~~& k_4 &= 1.3 \times 10^{-9}\,\mathrm{cm}^3\,\mathrm{s}^{-1} \\ \chem{H_2Cl^++e^- \xrightarrow{k_5} HCl+H} &~~~~~~~~& k_5 &= 1.5 \times 10^{-7}\,\mathrm{cm}^3\,\mathrm{s}^{-1} \end{align} $$ Reaction 3 is actually about four times more efficient at forming \(\chem{HCl^+}\) than reaction 1 (but doesn't offer such a straightfoward comparison with neutral-neutral kinetics). The net reaction is $$ \chem{Cl+H_3^++e^- \rightarrow HCl+2H} $$ Find the steady-state number density of \(\chem{HCl^+}\) in this mechanism, using the parameters from our previous example.

/