\( \newcommand{\xrightleftharpoons}[2]{\overset{#1}{\underset{#2}{\rightleftharpoons}}} \) \( \newcommand{\conc}[1]{\left[\mathrm{#1}\right]} \) \( \newcommand{\chem}[1]{\mathrm{#1}} \) \( \newcommand{\expect}[1]{\left< #1 \right>} \) \( \newcommand{\dbar}{d\kern-0.22em\raise.7ex\hbox{-}} \)

The Second and Third Laws: Entropy

Shaun Williams, PhD

Entropy of a Dilute Gas

Entropy of a Dilute Gas

Ensemble Size of the 3D Box System

Example Ensemble Sizes

As the number of particles and the size of the system increases, the ensemble size increases rapidly.

Entropy

Continuing the Derivation

$$ \begin{align} S &= k_\mathrm{B}\left\{ \begin{split} & -N\ln N + N - \left(\frac{3N}{2}-1\right) \ln \left(\frac{3N}{2}-1\right) \\ & + \left(\frac{3N}{2}-1\right) + \ln \left(\frac{\pi}{4}\right) \\ & + \left(\frac{3N}{2}-1\right) \ln \left(\frac{2\pi mEV^\bfrac{2}{3}}{h^2}\right) \end{split} \right\} \\ &\approx k_\mathrm{B} \left\{ \begin{split} & -N\ln N + N - \left(\frac{3N}{2}\right) \ln \left(\frac{3N}{2}\right) + \left(\frac{3N}{2}\right) \\ & + \ln \left(\frac{\pi}{4}\right) + \left(\frac{3N}{2}\right) \ln \left(\frac{2\pi mEV^\bfrac{2}{3}}{h^2}\right) \end{split} \right\} \\ \end{align} $$

Still More Derivation

$$ \begin{align} S &\approx k_\mathrm{B} \left\{ \begin{split} & -N\ln N + N - \left(\frac{3N}{2}\right) \ln \left(\frac{3N}{2}\right) + \left(\frac{3N}{2}\right) \\ & + \ln \left(\frac{\pi}{4}\right) + \left(\frac{3N}{2}\right) \ln \left(\frac{2\pi mEV^\bfrac{2}{3}}{h^2}\right) \end{split} \right\} \\ &= k_\mathrm{B} \left\{ N\left[ -\ln N + 1 - \frac{3}{2}\ln \frac{3N}{2} + \frac{3}{2} + \frac{3}{2} \ln \left(\frac{2\pi mEV^\bfrac{2}{3}}{h^2}\right) \right] \right\} \\ &= Nk_\mathrm{B} \left\{ \frac{5}{2} -\ln N +\ln\left(\frac{2}{3N}\right)^\bfrac{3}{2} + \ln \left(\frac{2\pi mEV^\bfrac{2}{3}}{h^2}\right)^\bfrac{3}{2} \right\} \\ &= Nk_\mathrm{B} \left\{ \frac{5}{2} + \ln \left[ \left(\frac{4\pi mE}{3Nh^2}\right)^\bfrac{3}{2} \frac{V}{N} \right] \right\} \end{align} $$

Sackur-Tetrode Equation

The Second Law of Thermodynamics

Return to an Example

Total Number of Microstates

Increasing Volume

Meaning

Second Law of Thermodynamics

Second Law and Temperature

The Take-Away

System and Reservoir Microstates

Because at the energy of the system increases, the energy of the resevoir decreases then as the number of microstate of the system increases, the number of microstates of the reservior decreases. This means that there is an energy that has the largest total number of microstates.

Finding the Largest Ensemble State

Finding the Largest Ensemble State Continued

$$ 0 = \left. \left(\frac{\partial \ln \Omega}{\partial E}\right)_{V,n} \right|_\chem{max} - \left. \left(\frac{\partial \ln \Omega_r}{\partial E_r}\right)_{V,n} \right|_\chem{max} $$ $$ \begin{align} \left. \left(\frac{\partial \ln \Omega}{\partial E}\right)_{V,n} \right|_\chem{max} &= \left. \left(\frac{\partial \ln \Omega_r}{\partial E_r}\right)_{V,n} \right|_\chem{max} \\ \left. \left(\frac{\partial S}{\partial E}\right)_{V,n}\right|_\chem{max} &= \left. \left(\frac{\partial S_r}{\partial E_r}\right)_{V,n}\right|_\chem{max} \\ \frac{1}{T} &= \frac{1}{T_r} \Rightarrow T=T_r \end{align} $$

What Does this Mean?

$$ T=T_r $$

Clausius Principle

Reversible and Adiabatic

Change in Entropy

Notes

Why Does \(\Delta S_T\) Depend on Path?

Thermodynamic Potentials

Gibbs Energy

So what?

In Benchtop Chemistry

Ideal Mixing

The Setup

Intuition

Each Gas

Volume to Moles

What Does this Equation Tell Us?

$$ \Delta_\chem{mix}S=n_\chem{A}R\ln \frac{1}{X_\chem{A}} + n_\chem{B}R\ln\frac{1}{X_\chem{B}}=-R\left( n_\chem{A}\ln X_\chem{A}+n_\chem{B}\ln X_\chem{B} \right) $$

Rewriting Our Ensemble Size Enough Again

Allowing for More Stuff

If That Wasn't Enough Fun, Now We Take the Difference

$$ \left[ \begin{split} & k_\mathrm{B} \left\{ \ln \left[ \Omega_\chem{A}^\chem{int} f(E_\chem{A},N_\chem{A}) \right] + \ln \left[ \Omega_\chem{B}^\chem{int} f(E_\chem{B},N_\chem{B}) \right] \right\} \\ & +N_\chem{A}k_\mathrm{B}\ln V_\chem{A} + N_\chem{B} k_\mathrm{B} \ln V_\chem{B} \end{split} \right] $$ $$ S_f = \left[ \begin{split} & k_\mathrm{B} \left\{ \ln \left[ \Omega_\chem{A}^\chem{int} f(E_\chem{A},N_\chem{A}) \right] + \ln \left[ \Omega_\chem{B}^\chem{int} f(E_\chem{B},N_\chem{B}) \right] \right\} \\ & + (N_\chem{A}+N_\chem{B})k_\mathrm{B} \ln (V_\chem{A}+V_\chem{B}) \end{split} \right] $$

Result

Ultimate Results

Free Energy of Mixing

Enthalpy of Mixing

The Third Law of Thermodynamics

The Third Law of Thermodynamics

Problem

Meaning

Getting to Absolute Zero

The Curie Temperature

Adiabatic Demagnetization; Step 1

Liquid helium is used to cool a crystal to near \(1\,\mathrm{K}\) as it is magnetized by a high-field external solenoid magnet.

Liquid helium is used to cool a crystal to near 1 Kelvin in the presence of a magnetic field.

Adiabatic Demagnetization; Step 2

The helium is replaced by vacuum once the crystal is fully magnetized.

Liquid helium is replaced by vacuum once the crystal is fully magnetized.

Adiabatic Demagnetization; Step 3

The external field is turned off.

The external magnetic field is turned off.

Adiabatic Demagnetization; Step 4

  • The spins in the crystal equilibrate with the phonons.
  • The net angular momentum of the spins is conserved by a current induced in the solenoid, which does work and further lowers the temperature of the crystal.
  • Final temperatures below \(10^{-6}\,\mathrm{K}\) can be achieved using this technique.
The spins in the crystal equilibrate with the phonons. This lowers the temperature of the sample.

Adiabatic Demagnetization: Effect on Temperature

When the liquid helium is cooling the sample, the temperature of both the phonons and the spins decrease. When the liquid helium is removed the temperature of the spins keeps dropping while the phonon temperature levels off. Once the external magnetic field is turned off, the spin temperature rises slightly while the phonon temperature drops dramatically and the spin and phonons equilibrate.

The Debye Theory

The Debye Theory Continued

Standard Molar Entropies

Selected Standard Molar Entropies

Substances \(S_\chem{m}^\ominus\; (\mathrm{J\,K^{-1}\,mol^{-1}})\) Substances \(S_\chem{m}^\ominus\; (\mathrm{J\,K^{-1}\,mol^{-1}})\)
Diatomic gases Tetratomic gases
\(\chem{Br_2(g)}\) 245.463 \(\chem{ClF_3(g)}\) 281.61
\(\chem{CO(g)}\) 197.674 \(\chem{SO_3(g)}\) 256.76
\(\chem{F_2(g)}\) 202.78 \(\chem{SO_2Cl_2(g)}\) 311.94
\(\chem{HF(g)}\) 173.779 Liquids
\(\chem{HI(g)}\) 206.594 \(\chem{H_2O(l)}\) 69.91
\(\chem{KCl(g)}\) 239.10 \(\chem{Br_2(l)}\) 152.231
\(\chem{O_2(g)}\) 205.138 \(\chem{CS_2(l)}\) 151.34
\(\chem{SiN(g)}\) 216.76 Solids
Tetratomic gases \(\chem{C(diamond)}\) 2.377
\(\chem{C_2H_2(g)}\) 200.94 \(\chem{C(graphite)}\) 5.740
\(\chem{COCl_2(g)}\) 283.53 \(\chem{SiO_2(quartz)}\) 41.84

Computer Simulations

Due to limited time, we are going to skip the final section of this chapter.

/