\( \newcommand{\xrightleftharpoons}[2]{\overset{#1}{\underset{#2}{\rightleftharpoons}}} \) \( \newcommand{\conc}[1]{\left[\mathrm{#1}\right]} \) \( \newcommand{\chem}[1]{\mathrm{#1}} \) \( \newcommand{\expect}[1]{\left< #1 \right>} \)

Mass Transport: Collisions and Diffusion

Shaun Williams, PhD

Collision Parameters

Chemical Environments

Molecular Collisions

Molecular Speeds

Various Maxwell-Boltzmann Speeds

Average Relative Speed

Root Mean Squared Velocity

Collision Energy

Frame of Reference

A stationary frame of reference where particles A and B are both traveling towards each other with velocities of +v and -v, respectively. $$ K = 2\left( \frac{1}{2} mv^2 \right) = mv^2 $$
A reference frame traveling with a velocity of +v. Particle B is stationary. Particle A is traveling towards particle B with a velocity of +2v. $$ K = \left( \frac{1}{2} m\left( 2v \right)^2 \right) = 2mv^2 $$

So what do we use?

Intermolecular Potential Energy Surface with \(E_\chem{AB}\)

The collision energy between particles A and B are above the zero energy of the Lennard-Jones potential for the interaction of the two particles.

Collision Cross Section

A cross sectional view of a particle travelling down a pipe full of other particles.
The same view, now end on, of particles clogging up the path down a pipe.

Selected Collision Cross Sections, \( \sigma \left( \AA^2 \right) \)

Gas \( \sigma (\AA^2) \) Gas \( \sigma (\AA^2) \)
\( \chem{He} \) 22 \( \chem{Ne} \) 25
\( \chem{H_2} \) 27 \( \chem{Ar} \) 36
\( \chem{O_2} \) 36 \( \chem{N_2} \) 37
\( \chem{NH_3} \) 43 \( \chem{CO_2} \) 45
\( \chem{CH_4} \) 52 \( \chem{H_2O} \) 62
\( \chem{C_2H_4} \) 71 \( \chem{C_2H_2} \) 72
\( \chem{C_2H_6} \) 84 \( \chem{SO_2} \) 90
\( n-\chem{C_4H_{10}} \) 148 \( \chem{CHCl_3} \) 156

Collision Cross Section of Dissimilar Molecules

$$ \begin{align} \sigma_\chem{AB} &= \pi d_\chem{AB}^2 = \pi \left( \frac{d_\chem{A}+d_\chem{B}}{2} \right)^2 \\ &= \frac{\pi}{4} \left( d_\chem{A}^2 + 2d_\chem{A}d_\chem{B} + d_\chem{B}^2 \right) \\ &= \frac{\pi}{4} \left( \frac{\sigma_\chem{A}}{\pi} + \frac{2\sqrt{\sigma_\chem{A}\sigma_\chem{B}}}{\pi} + \frac{\sigma_\chem{B}}{\pi} \right) \\ &= \frac{1}{4} \left( \sigma_\chem{A} + 2\sqrt{\sigma_\chem{A}\sigma_\chem{B}} + \sigma_\chem{B} \right) \end{align} $$

Average Collision Frequency

Mean Free Path

Example 5.1

What are \(\rho\), \(\lambda\), \(\expect{v_\chem{AA}}\), and \(\lambda\) for \(\chem{N_2}\) at \(1.00\,\mathrm{bar}\) and \(298\,\mathrm{K}\)? What is the average collision energy in units of \(\chem{cm^{-1}}\)?

Changes in Trajectory

The Random Walk

Randomness

Flipping a Coin

Doing Some Math

$$ \mathcal{P}(k)=\frac{N!}{2^Ni!j!} $$

$$ \begin{align} i &= N-j=N-(i-k) \\ &= N-i+k \\ i &= \frac{N+k}{2} \end{align} $$ $$ \begin{align} j &= N-i=N-(j+k) \\ &= N-i-k \\ j &= \frac{N-k}{2} \end{align} $$

$$ \mathcal{P}(k) = \frac{N!}{2^N \frac{N+k}{2}!\frac{N-k}{2}!} $$

More Math

Skipping Some More Math

\(\mathcal{P}(k)\) Versus \(k\) for \(N=100\) and \( N=1000\)

With the smaller number of N, the probability is narrowly focused around k=0. As the number of events increases, the probability spreads out.

Similar Equations

Transport without External Forces

Wandering Particles

Diffusion

Diffusion Equation

Distance Travelled

System for Fick's Laws

A square pipe with flow along the z axis. The cross sectional area of the pipe is A.

Fick's Laws

Example 5.2

Find the flux \(J(Z)\) and the flow rate \(\frac{d\rho}{dt}\) if the concentration is given by the linear gradient $$ \rho(Z) = \rho_0 cZ $$

Diffusion in Solids

Viscosity

Momentum Transfer

When a molecule bounces off a solid surface momentum can be transfered. When a faster moving particle collides with a slower moving particle, momentum is tranfered.

System for Elementary Viscosity Law

A solid surface of area A in the y,z plane. Particle are above it (in the +x direction).

Simple Viscosity

How Does the Momentum Change per Collision?

Viscosity is a Force

Solving the Viscosity

Stokes' Law

Poiseuille's Formula

Example Diffusion Constants and Viscosities

Sample \(D_\chem{obs}\) \(D_\chem{calc}\) Sample \(D_\chem{obs}\) \(D_\chem{calc}\)
\(\chem{H_2}\text{ in }\chem{N_2} \\ \text{293.15 K, 1.01 bar}\) \(0.772\) \(1.06\) \(\chem{H_2} \\ \text{300 K, 0.01 bar}\) \(9.0\times 10^{-5}\) \(10.8\times 10^{-5}\)
\(\chem{Ar}\text{ in }\chem{N_2} \\ \text{293.15 K, 1.01 bar}\) \(0.190\) \(0.312\) \(\chem{Ar} \\ \text{300 K, 1.00 bar}\) \(22.9\times 10^{-5}\) \(36.3\times 10^{-5}\)
\(\chem{Ar}\text{ in }\chem{N_2} \\ \text{573.15 K, 1.01 bar}\) \(0.615\) \(0.853\) \(\chem{Ar} \\ \text{600 K, 1.00 bar}\) \(39.0\times 10^{-5}\) \(50.8\times 10^{-5}\)
\(\chem{H_2O}\text{ in }\chem{N_2} \\ \text{293.15 K, 1.01 bar}\) \(0.242\) \(0.290\) \(\chem{H_2O} \\ \text{300 K, 0.10 bar}\) \(10.0\times 10^{-5}\) \(14.3\times 10^{-5}\)
\(\chem{H_2O}\text{ in }\chem{acetone(liq)} \\ \text{298 K}\) \(4.56\times 10^{-5}\) \(4.7\times 10^{-4}\) \(\chem{H_2O(liq)} \\ \text{298 K}\) \(8.90\times 10^{-3}\) \(14.3\times 10^{-5}\)

Transport with External Forces

Sedimentation

Schematic of Ultracentrifuge

Sample cells are held a distance r from the rotation axis. The system rotates at an angular rate of omega.

Frictional Force

Simplifying

Electrophoresis

Convection and Chromatography

/