\( \newcommand{\xrightleftharpoons}[2]{\overset{#1}{\underset{#2}{\rightleftharpoons}}} \) \( \newcommand{\conc}[1]{\left[\mathrm{#1}\right]} \) \( \newcommand{\chem}[1]{\mathrm{#1}} \) \( \newcommand{\expect}[1]{\left< #1 \right>} \)

Partitioning the Energy

Shaun Williams, PhD

Separation of Degrees of Freedom

Nuclear Motion

Review of Canonical Ensemble

Evaluation of the Partition Function

Classical Average Value Theorem

Moving Towards a Partition Function

Translational Energy

Probability of Translational Energies

Solving the Integral

Manipulating These Expressions

$$ \begin{align} \int_{-\infty}^{\infty} x^2 e^{-ax^2}\,dx &= \int_{-\infty}^0 x^2 e^{-ax^2} \, dx + \int_0^\infty x^2 e^{-ax^2} \, dx \\ &= \int_0^\infty \left( -x \right)^2 e^{-a\left( -x\right)^2} \, dx + \int_0^\infty x^2 e^{-ax^2} \, dx \\ &= 2\int_0^\infty x^2 e^{-ax^2}\, dx = \frac{1}{2}\left( \frac{\pi}{a^3} \right)^\bfrac{1}{2} \\ \int_{-\infty}^\infty \, dx &= 2\int_0^\infty e^{-ax^2}\, dx = \left( \frac{\pi}{a} \right)^\bfrac{1}{2} \end{align} $$

Solving Out Energy Equations

$$ \begin{align} \expect{\varepsilon_x} &= \left( \frac{m}{2} \right) \frac{\int_{-\infty}^\infty e^{-\frac{mv_x^2}{2k_\mathrm{B}T}} v_x^2 \, dv_x}{\int_{-\infty}^\infty e^{-\frac{mv_x^2}{2k_\mathrm{B}T}} \, dv_x} \\ &= \left( \frac{m}{2} \right) \frac{\frac{1}{2} \left( \frac{\pi}{\left[ \frac{m}{2k_\mathrm{B}T} \right]^3} \right)^\bfrac{1}{2}}{\left( \frac{\pi}{\frac{m}{2k_\mathrm{B}T}} \right)^\bfrac{1}{2}} = \frac{m}{2}\frac{1}{2}\frac{2k_\mathrm{B}T}{m} = \frac{k_\mathrm{B}T}{2} \end{align} $$

Analysis

Rotations

Vibrations

The Equipartition Principle

The Equipartition Principle

Motions Contributing to \(N_\chem{ep}\)

Types of Gases

Gas Trans Rotation Vibration Total Energy
Monatomic \(E=\frac{k_\mathrm{B}T}{2}\times \left( \right.\) \(3\) \(+0\) \(+0\) \(\left.\right)=\frac{3}{2}k_\mathrm{B}T\)
Diatomic \(E=\frac{k_\mathrm{B}T}{2}\times \left( \right.\) \(3\) \(+2\) \(+1 \times 2\) \(\left.\right)=\frac{7}{2}k_\mathrm{B}T\)
Linear Triatomic \(E=\frac{k_\mathrm{B}T}{2}\times \left( \right.\) \(3\) \(+2\) \(+4 \times 2\) \(\left.\right)=\frac{13}{2}k_\mathrm{B}T\)
Nonlinear Triatomics \(E=\frac{k_\mathrm{B}T}{2}\times \left( \right.\) \(3\) \(+2\) \(+3 \times 2\) \(\left.\right)=\frac{12}{2}k_\mathrm{B}T\)

Equipartition Energy and Degrees of Freedom

Graphical representation of the motions of the atoms for the four types of gases discussed in the previous slides table.

Excitations

There is a large energetic spacing between the ground electronic state and the first-excited electronic state. The vibrational levels are stacked on the electronic energy levels and have a smaller spacing between adjacent levels. Smaller still at the rotational levels that are stacked on top of the vibrational levels. The smallest levels are the translational levels that are stacked on the rotational energy levels.

Example 3.1

From the equipartition principle, estimate the energies in \(\mathrm{J}\) that must be carried away to cool (a) \(0.500\,\chem{mol\, He(g)}\) and (b) \(0.500\, \chem{mol\, CO(g)}\) from \(1000\, \mathrm{K}\) to \(900\, \mathrm{K}\) at constant volume.

Vibrational and Rotational Partition Functions

Vibrational Partition Function

The Partition Function

Select Vibrational and Rotational Constants

Molecule \(\mu \\ (\chem{amu})\) \(R_e \\ (\AA)\) \(B \\ (\textrm{cm}^{-1})\) \(\alpha_e \\ (\textrm{cm}^{-1})\) \(D \\ (10^{-6}\, \textrm{cm}^{-1})\) \(\omega_e \\ (\textrm{cm}^{-1})\) \(\omega_ex_e \\ (\textrm{cm}^{-1})\)
\(\chem{{}^1H{}^1H}\) 0.50 0.742 60.8536 3.062 46660 4401.21 121.34
\(\chem{{}^1H{}^2D}\) 0.67 0.742 45.6378 1.9500 3811.92 90.71
\(\chem{{}^2D{}^2D}\) 1.01 0.742 30.442 1.0632 3118.46 117.91
\(\chem{{}^1H{}^{19}F}\) 0.96 0.917 20.9557 0.798 2150 4138.32 89.88
\(\chem{{}^1H{}^{35}Cl}\) 0.98 1.275 10.5934 0.3702 532 2990.95 52.82
\(\chem{{}^1H{}^{79}Br}\) 1.00 1.414 8.3511 0.226 372 2649.67 45.21
\(\chem{{}^1H{}^{127}I}\) 1.00 1.609 3.2535 0.0608 526 2309.60 39.36
\(\chem{{}^2D{}^{19}F}\) 1.82 0.917 11.0000 0.2907 585 2998.19 45.76
\(\chem{{}^{12}C{}^{16}O}\) 6.86 1.128 1.9313 0.0175 6 2169.82 13.29
\(\chem{{}^{14}N{}^{14}N}\) 7.00 1.098 1.9987 0.0171 6 2358.07 14.19
\(\chem{{}^{14}N{}^{16}O^+}\) 7.47 1.063 1.9982 0.0190 2377.48 16.45
\(\chem{{}^{14}N{}^{16}O}\) 7.47 1.151 1.7043 0.0173 -37 1904.41 14.19
\(\chem{{}^{14}N{}^{16}O^-}\) 7.47 1.286 1.427 1372 8

More Select Vibrational and Rotational Constants

Molecule \(\mu \\ (\chem{amu})\) \(R_e \\ (\AA)\) \(B \\ (\textrm{cm}^{-1})\) \(\alpha_e \\ (\textrm{cm}^{-1})\) \(D \\ (10^{-6}\, \textrm{cm}^{-1})\) \(\omega_e \\ (\textrm{cm}^{-1})\) \(\omega_ex_e \\ (\textrm{cm}^{-1})\)
\(\chem{{}^{16}O{}^{16}O}\) 8.00 1.207 1.4457 0.0158 5 1580.36 12.07
\(\chem{{}^{19}F{}^{19}F}\) 9.50 1.418 0.8828 891.2
\(\chem{{}^{35}Cl{}^{35}Cl}\) 17.48 1.988 0.2441 0.0017 0.2 560.50 2.90
\(\chem{{}^{79}Br{}^{79}Br}\) 39.46 2.67 0.0821 0.0003 0.02 325.29 1.07
\(\chem{{}^{127}I{}^{79}Br}\) 48.66 2.470 0.0559 0.0002 0.008 268.71 0.83
\(\chem{{}^{127}I{}^{127}I}\) 63.45 2.664 0.0374 0.0001 -0.005 214.52 0.61
\(\chem{{}^{23}Na{}^{23}Na}\) 11.49 3.077 0.1548 0.0009 0.7 159.13 0.73
\(\chem{{}^{133}Cs{}^{133}Cs}\) 66.45 4.47 0.0127 0.00003 0.005 42.02 0.08

Example 3.2

Find the abundance of \(\chem{ICl}\) molecules in the ground and lowest excited vibrational states at \(300\,\mathrm{K}\), given that the vibrational constant \(\omega_e\) is \(384\,\mathrm{cm}^{-1}\).

Rotational Motion

Simplification

$$ q_\chem{rot} = \sum_{J=0}^\infty g_\chem{rot} e^{-\frac{E_\chem{rot}}{k_\mathrm{B}T}} \approx \int_0^\infty g_\chem{rot} e^{-\frac{BJ(J+1)}{k_\mathrm{B}T}} \, dJ $$

The Integral Approximation To \(q_\chem{rot}\)

As the temperature increases, the integral approximation value of the rotational partition function gets closer and close to the exact value.

Combining Equations

Example 3.3

Compare the rotational partition functions for \(\chem{CO}\) (\(\frac{B}{k_\mathrm{B}} = 2.70\,\mathrm{K}\)) obtained by using the integral and by using the direct sum, at \(273\,\mathrm{K}\) and at \(10\,\mathrm{K}\).

Example 3.4

Find the number density of \(\chem{OCS}\) molecules in a \(100.0\,\mathrm{Pa}\) sample at \(298\,\mathrm{K}\) that are in the vibrational state \((v_1, v_2, v_3) = (1, 0, 1)\) and rotational state \(J = 10\). The constants of \(\chem{CS}\)-stretch \(\omega_1 = 859\,\mathrm{cm}^{-1}\), bend \(\omega_2 = 527\,\mathrm{cm}^{-1}\), and \(\chem{CO}\)-stretch \(\omega_3 = 2080\,\mathrm{cm}^{-1}\), \(B = 0.2028\,\mathrm{cm}^{-1}\). The bending mode is a doubly degenerate vibrational motion, so it counts for two modes. Give the final value in molecules per cubic centimeter.

Another Rotational Partition Function

Complications of Rotations

Example: \(\chem{{}^1H_2}\)

Nuclear Spin States

Symmetric vs Antisymmetric

Exchange Symmetry of Rotations

  • Exchanging the labels, reverses the direction $$ \Theta' = \pi - \Theta $$
  • This means
    • \(\cos \Theta\) changes sign
    • \(\cos^2\Theta\) does not change sign
When the labels are reversed, the direction of rotation has technicall reversed.

Overall Rotational Symmetry

Meaning

Spin Statistics Effects on the Partition Function

Rotational Partition Function for \(\chem{{}^1H_2}\)

$$ \begin{align} q_\chem{rot}\left(\chem{H_2}\right) =& q_\chem{rot}\left(I_T=0\right) + q_\chem{rot}\left(I_T=1\right) \\ =& \left[ 1+5e^{-\frac{6B}{k_\mathrm{B}T}}+9e^{-\frac{20B}{k_\mathrm{B}T}}+\dots \right] \\ & +3 \left[ 3e^{-\frac{(2-2)B}{k_\mathrm{B}T}}+7e^{-\frac{(12-2)B}{k_\mathrm{B}T}}+11e^{-\frac{(30-2)B}{k_\mathrm{B}T}}+\dots \right] \end{align} $$

Other Systems

The Translational Partition Function

Translations

Counting the Energy Levels

The Integral Approximation To \(q_\chem{rot}\)

A part of a sphere in the nx, ny, nz sphere. A point on the surface of that sphere is n away from the center and has a thickness of dn.

Counting Points on a Surface

There is an huge number of tiny spots that can be considered on the surface of a sphere.

The Number of Points

Density of States

Temperature and the Maxwell-Boltzmann Distribution

The Energies

Example 3.5

Calculate the root mean square momentum along the \(x\) axis \(\expect{p_x^2}^\bfrac{1}{2}\) in \(\mathrm{kg\, m\, s^{-1}}\) of a helium atom in the gas-phase when the temperature is \(312\, \mathrm{K}\). (We don’t want to calculate \(\expect{p_x}\) because that should average to zero, motion in the \(+x\) and \(–x\) directions being equally likely.)

Questions

  1. Why does \(T\) depend on only the easily excited degrees of freedom?
    • Degree of freedom that isn’t excited doesn’t contribute to the degeneracy of quantum states.
  2. Why does \(T\) depend on only the kinetic energy?
    • Once we have established the confines of the system and the forces, the potential energy becomes a fixed parameter and the kinetic energy can adjust to change the degeneracy.

Easily Excited Degrees of Freedom

At low temperatures, only a couple of the lowest rotational levels in the lowest vibrational level are populated. At slightly higher temperatures, higher energy rotational levels of the lowest energy vibrational level are populated. At high temperatures low energy rotational levels in a vibrational excited state begin to be populated.

Temperature and Kinetic Energy

Increasing the potential of a gaseous system, like increasing its altitude, does nothing to effect the motion of the particles in the gas.

Boltzmann Constant and Temperature

Example 3.6

Find the average translational kinetic energy (in \(\mathrm{kJ\, mol^{-1}}\)) and the rms speed along the \(x\) axis \(\expect{v_x^2}^\bfrac{1}{2}\) for a nitrogen molecule at \(298\, \mathrm{K}\).

The Probability Distribution

Moving to Speed Instead of Velocity

Exchange Symmetry of RotationsQuantizer Energy

  1. Little population at the lowest speeds
  2. Little population at the highest speeds
  3. As temperature increases, the distribution shifts towards higher \(E\)
As the temperature of a gas increases, the distribution of speeds of the particles in the gas shifts to higher temperature and broadens out.

Example 3.7

In a \(1.00\, \mathrm{mole}\) sample of \(\chem{N_2}\) at \(298\, \mathrm{K}\), calculate the number of molecules that will have speeds \(v\) within \(0.005\, \mathrm{m\, s^{-1}}\) of \(10.0\, \mathrm{m\, s^{-1}}\).

Maxwell-Boltzmann Distribution: Average Velocity

$$ \begin{align} \expect{v} &= \frac{\int_0^\infty \mathcal{P}_v(v) v\,dv}{\int_0^\infty \mathcal{P}_v(v)\,dv} \\ &= \frac{4\pi \int_0^\infty e^{-\frac{mv^2}{2k_\mathrm{B}T}} v^3 \,dv}{4\pi \int_0^\infty e^{-\frac{mv^2}{2k_\mathrm{B}T}} v^2 \,dv} \\ &= \frac{\frac{1}{2}\left( \frac{2k_\mathrm{B}T}{m} \right)^2}{\frac{1}{4}\left( \frac{2\pi k_\mathrm{B}^3T^3}{m^3} \right)^\bfrac{1}{2}} \\ &= \left( \frac{8k_\mathrm{B}T}{\pi m} \right)^\bfrac{1}{2} = \sqrt{\frac{8k_\mathrm{B}T}{\pi m}} \end{align} $$

/